Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{3}+\frac{1}{3}=\frac{6+3}{3}=\frac{9}{3}=3\)
\(\frac{3}{4}+\frac{2}{4}+\frac{1}{4}=\left(\frac{3}{4}+\frac{1}{4}\right)+\frac{1}{2}=1+\frac{1}{2}=1\frac{1}{2}=\frac{3}{2}\)
\(\frac{4}{5}+\frac{3}{5}+\frac{2}{5}+\frac{1}{5}=\left(\frac{4}{5}+\frac{1}{5}\right)+\left(\frac{3}{5}+\frac{2}{5}\right)=2+2=4\)
\(\frac{5}{6}+\frac{4}{6}+\frac{3}{6}+\frac{2}{6}+\frac{1}{6}=\left(\frac{5}{6}+\frac{1}{6}\right)+\left(\frac{4}{6}+\frac{2}{6}\right)+\frac{1}{2}=1+1\)\(+\frac{1}{2}=2\frac{1}{2}=\frac{5}{2}\)
ngu LÊ MĨ LINH
theo thứ tự :1,6/4 =1 và 1/2,2,5/2,500
Để \(\frac{2n+5}{n+3}\)là số tự nhiên thì :\(2n+5⋮n+3\)
\(\hept{\begin{cases}2n+5⋮n+3\\n+3⋮n+3\end{cases}}\)\(=>\hept{\begin{cases}2n+5⋮n+3\\2n+6⋮n+3\end{cases}=>2n+6-2n-5⋮n+3}\)
(=) 1\(⋮\)n+3
=> n+3\(\in\)Ư(1)
=> n ko tồn tại
\(Tadellco::\left(\right)\left(\right)\)
\(\frac{2n+5}{n+3}\in Z\Rightarrow2n+5⋮n+3\Rightarrow2\left(n+3\right)-\left(2n+5\right)=1⋮n+3\Rightarrow n+3\in\left\{1;-1\right\}\)
\(\Rightarrow n\in\left\{-4;-2\right\}\)
b, \(Tadellco\left(to\right)\left(rim\right)\)
\(\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-.....-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\Rightarrow...........\)
3A = 1 + 1/3 + 1/3^2 + ... + 1/3^199
3A - A = ( 1 + 1/3 + 1/3^2 + ... + 1/3^99 ) - ( 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^100 )
2A = 1 - 1/3^100
A = ( 1 - 1/3^100 ) / 2
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\right)\)
\(2A=1-\frac{1}{3^{100}}\)
\(A=\frac{3^{100}-1}{3^{100}.2}\)
mk chỉ làm được đến đây thôi
Ta có:
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(\frac{1}{5^2}< \frac{1}{4.5}\)
....
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}\)
\(-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
=> đpcm
\(a,\frac{2}{3}\cdot x-\frac{4}{7}=\frac{1}{8}\)
\(\Leftrightarrow\frac{2}{3}\cdot x=\frac{1}{8}+\frac{4}{7}\)
\(\Leftrightarrow\frac{2}{3}\cdot x=\frac{7}{56}+\frac{32}{56}\)
\(\Leftrightarrow\frac{2}{3}\cdot x=\frac{39}{56}\)
\(\Leftrightarrow x=\frac{39}{56}:\frac{2}{3}=\frac{39}{56}\cdot\frac{3}{2}=\frac{39\cdot3}{56\cdot2}=\frac{117}{112}\)
\(b,\frac{2}{7}-\frac{8}{9}\cdot x=\frac{2}{3}\)
\(\Leftrightarrow\frac{8}{9}\cdot x=\frac{2}{7}-\frac{2}{3}\)
\(\Leftrightarrow\frac{8}{9}\cdot x=\frac{6}{21}-\frac{14}{21}\)
\(\Leftrightarrow\frac{8}{9}\cdot x=\frac{-8}{21}\)
\(\Leftrightarrow x=\frac{-8}{21}:\frac{8}{9}=\frac{-8}{21}\cdot\frac{9}{8}=\frac{-8\cdot9}{21\cdot8}=\frac{-1\cdot3}{7\cdot1}=\frac{-3}{7}\)
Làm nốt hai bài cuối đi nhé
Study well >_<
Mk k chép lại đề bài nha
a)\(\frac{2}{3}.x=\frac{1}{8}+\frac{4}{7}\)
\(\frac{2}{3}.x=\frac{7}{56}+\frac{32}{56}\)
\(\frac{2}{3}.x=\frac{39}{56}\)
\(x=\frac{39}{56}:\frac{2}{3}\)
\(x=\frac{39}{56}.\frac{3}{2}\)
\(x=\frac{117}{112}\)
Mk sợ sai lém!!!
1.\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...........\frac{49}{50}=\frac{1}{50}\)
Bài 1 :
\(x\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\right)=1\)
\(\Rightarrow x\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)=1\)
\(\Rightarrow x\left(\frac{1}{2}-\frac{1}{50}\right)=1\)
\(\Rightarrow x\cdot\frac{24}{50}=1\)
\(\Rightarrow x=1\div\frac{24}{50}=\frac{25}{12}\)
#Louis
\(\frac{1}{2.3}x+\frac{1}{3.4}x+\frac{1}{4.5}x+...+\frac{1}{49.50}x=1\)
\(\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\right)x=1\)
\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)x=1\)
\(\left(\frac{1}{2}-\frac{1}{50}\right)x=1\)
\(\frac{12}{25}x=1\)
Đến đây dễ rồi :)))
Bn tự tính típ nha
\(\frac{1}{2}S=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{101}}\)
=> \(\frac{1}{2}S-S=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}+\frac{1}{2^{101}}-\frac{1}{2^{100}}-...-\frac{1}{2}-1\)
<=> \(\frac{-1}{2}S=\frac{1}{2^{101}}-1\)
<=> \(S=2-\frac{1}{2^{100}}\)
Ta có :
S = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\left(1\right)\)
\(\Rightarrow2S=2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\left(2\right)\)
Lấy (2) - (1) ta được :
\(S=2-\frac{1}{2^{100}}=\frac{2^{101}-1}{2^{100}}\)