K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

           S=1.2+2.3+3.4+4.5+...+98.99+99.100

suy ra :3S=1.2.3+2.3.3+3.4.3+4.5.3+...+98.99.3+99.100.3

            3S=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+98.99.(100-97)+99.100.(101-98)

           3S=1.2.3.0+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+98.99.100-97.98.99+99.100.101-98.99.100

           3S=99.100.101

Suy ra :S=99.100.10:3=333300

vậy S=333300

17 tháng 1 2017

ko bit

30 tháng 12 2017

Đặt A= 1.2+2.3 +.......+99.100

3A= 1.2.3+2.3.4+3.4.3 +......+ 99.100.3

3A= 1.2. (3 - 0) + 2.3.(4 - 1) +3.4. (5 - 2)....... . 99.100. (101 - 98)

3A = (1.2.3 + 2.3.4 + 3.4.5 +...... + 99.100.101) - (0.1.2 + 1.2.3 + 2.3.4 +.......+ 98.99.100)

3A = 99.100.101 - 0.1.2

3A = 999900 - 0

3A= 999900

A= 999900 : 3

A = 333300 

30 tháng 12 2017

A=1.2+2.3+3.4+…+99.100

3A = 1.2.3 + 2.3.3 + ... + 99.100.3

3A = 1.2.3 + 2.3.(4-1) + ... + 99.100.(101-98)

3A = 1.2.3 + 2.3.4 - 1.2.3 + ... + 99.100.101 - 98.99.100

3A = 99.100.101

=> A = \(\frac{99.100.101}{3}\)= 333 300

2 tháng 4 2017

\(A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=2.\left(\frac{1}{2}-\frac{1}{100}\right)=2.\frac{49}{100}=\frac{49}{50}\)

6 tháng 4 2017

Cảm ơn bạn nhiều nha Nguyễn Tuấn Minh

22 tháng 12 2015

 Gọi tổng trên là;A

A=9+99+999+........+999...9(20 số 9)

A=(10-1)+(100-1)+.......+(100...0(20 số 0)-1)

A=10+102+103+........+1020-(1+1+.........+1) 20 số 1

10A=102+103+.........+1021-200

10A-A=1021-10-200+20=1021-190

A=\(\frac{10^{21}-190}{9}\)

1 tháng 10 2017

có 200 chữ số 9 bạn viết 20

16 tháng 4 2016

Đặt S= 1.2 + 2.3 + 3.4 + ...+ 99.100
 3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101  3S = 3.33.100.101 
 S=33.100.101= 333300

16 tháng 4 2016

Bạn rút gọn chéo đi 2 với 2 ,3 với 3 cứ như thế còn mỗi 1/100. k nhé

8 tháng 9 2018

Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 99.100

=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + 99.100.101

=> 3S = 99.100.101

=> S = \(\frac{99.100.101}{3}=333300\)

NM
11 tháng 2 2021

ta xét

\(S\left(n\right)=1.2+2.3+..+n\left(n-1\right)\)

\(\Rightarrow3S\left(n\right)=1.2.3+2.3.3+..+3.n.\left(n-1\right)\)

\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+..+n\left(n-1\right)\left(n+1-\left(n-2\right)\right)\)

\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+..+n\left(n-1\right)\left(n+1\right)-n\left(n-1\right)\left(n-2\right)\)

\(\Leftrightarrow3S\left(n\right)=n\left(n-1\right)\left(n+1\right)\Rightarrow S\left(n\right)=\frac{n\left(n-1\right)\left(n+1\right)}{3}\)

Áp dụng ta có \(S\left(100\right)=\frac{99.100.101}{3}=333300\)

2 tháng 4 2018

Ta có: \(S=1.2+2.3+3.4+...+99.100\)

\(\Rightarrow3S=1.2.3+2.3.3+3.3.4+....+99.100.3\)

\(\Rightarrow3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)....99.100.\left(101-98\right)\)

\(\Rightarrow3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(\Rightarrow3S=99.100.101\)

\(\Rightarrow S=\frac{99.100.101}{3}=\frac{999900}{3}=333300\)

2 tháng 4 2018

S=  1.2 + 2.3 +... + 99.100

=>S= \(\frac{99.100.101}{3}\)=333300