K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2016

làm được mình cho,thanks

24 tháng 11 2016

Tính giá trị của A, biết:

A = 1.3+2.4+3.5+...+99.101

Bài làm :

 

Thay thừa số 3, 4, 5, 6.....101 bắng (2+1), (3+1), (4+1).....(100 +1)

Ta có

A = 1(2+1)+2(3+1)+3(4+1)+...+99(100+1)

A = 1.2+1+2.3+2+3.4+3+...+99.100+99

A = (1.2+2.3+3.4+...+99.100)+(1+2+3+...+99)

A = 333300 + 4950 = 338250

Dãy đầu áp dụng công thức [*2] , Dãy sau công thức [*1]

Tính: A = 1.4+2.5+3.6+...+99.102 = ?

 

Bài làm:

 

Thay thừa số 3, 4, 5, 6.....101 bắng (2+1), (3+1), (4+1).....(100 +1)

Ta có

A = 1(2+1)+2(3+1)+3(4+1)+...+99(100+1)

A = 1.2+1+2.3+2+3.4+3+...+99.100+99

A = (1.2+2.3+3.4+...+99.100)+(1+2+3+...+99)

A = 333300 + 4950 = 338250

Dãy đầu áp dụng công thức [*2] , Dãy sau công thức [*1]

Tính tổng các bình phương của 100 số tự nhiê n đầu tiên

A = 12 +22 +32+...+992 +1002

Bài làm :

 

thay thừa số 3, 4, 5, 6.....101 bắng (2+1), (3+1), (4+1).....(100 +1)

Ta có

A = 1(2+1)+2(3+1)+3(4+1)+...+99(100+1)

A = 1.2+1+2.3+2+3.4+3+...+99.100+99

A = (1.2+2.3+3.4+...+99.100)+(1+2+3+...+99)

A = 333300 + 4950 = 338250

Dãy đầu áp dụng công thức [*2] , Dãy sau công thức [*1]

 

30 tháng 9 2017

CÁC BẠN TRẢ LỜI NHANH NHÉ CHIỀU NAY PHẢI CÓ KẾT QUẢ

30 tháng 9 2017

a/ Ta tính trường hợp tổng quát có n số hạng. Ta có:
+/ S1 = 1 + 2 + 3 + ....+n = \(\frac{n\left(n+1\right)}{2}\)
+/ S2 = 1.2 + 2.3 + 3.4 +...+ n(n+1)
3S2 = 1.2.3 + 2.3.3 + 3.4.3 +..+ n(n+1).3
3S2= 1.2.3 + 2.3.(4-1) + 3.4.(5-2) +..+ n(n+1)(n+2 -(n-1))
3S2= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +.. - (n-1)n(n+1) + n(n+1)(n+2)
3S2= n(n+1)(n+2)
=> S2 = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Tính S = 1² + 2² + ...+ n²
Ta có: S2 - S1 = [1.2 + 2.3 + 3.4 +...+ n(n+1)]-(1 + 2 + 3 + ....+n)

=> S2 - S1=(1.2-1)+(2.3-2)+(3.4-3)+...+[n(n+1)-n]

=> S2 - S1=1+4+9+...+n2=12+22+32+...+n2=S

Như vậy: S=S2-S1=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}-\frac{n\left(n+1\right)}{2}\)

=> \(S=n\left(n+1\right).\left(\frac{n+2}{3}-\frac{1}{2}\right)\)

=> \(S=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

Thay n=98 => \(S=\frac{98.99.197}{6}=318549\)

b/ 2014.2016=2014(2015+1)=2014+2014.2015=2014+2015(2015-1)=2014+20152-2015=20152-1<20152

Vậy 2014.2016<20152