Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(21+22+23+...+n+4840\)
\(\Rightarrow\left[\left(n-21\right):1+1\right]\left(n+21\right):2=4840\)
\(\Rightarrow\left(n-20\right)\left(n+21\right)=9680\)
\(\Rightarrow n^2+n-420=9680\)
\(\Leftrightarrow n^2+n-100100=0\)
\(\Leftrightarrow n^2-100n+101n-100100=0\)
\(\Leftrightarrow n\left(n-100\right)+101\left(n-100\right)=0\)
\(\Leftrightarrow\left(n+101\right)\left(n-100\right)=0\)
\(\Leftrightarrow\left[n=-101\text{(loại)},n=100\right]\)
\(\Rightarrow n=100\)
\(\text{Hok tốt!}\)
\(\text{@Kaito Kid}\)
21 + 22 + 23 + ... + n = 4840
=> [(n - 21) : 1 + 1](n + 21) : 2 = 4840
=> (n - 20)(n + 21) = 9680
=> n2 + n - 420 = 9680
<=> n2 + n - 10100 = 0
<=> n2 - 100n + 101n - 10100 = 0
<=> n(n - 100) + 101(n - 100) = 0
<=> (n + 101)(n - 100) = 0
<=> \(\orbr{\begin{cases}n=-101\left(\text{loại}\right)\\n=100\end{cases}}\)
Vậy n = 100
a) \(\left(\dfrac{1}{2}\right)^n\le10^{-9}\)\(\Leftrightarrow2^{-n}\le10^{-9}\)\(\Leftrightarrow-n\le log^{10^{-9}}_2\)\(\Leftrightarrow-n\le-9log^{10}_2\)\(\Leftrightarrow n\ge9log^{10}_2\)\(\Leftrightarrow n\ge30\).
Vậy \(n=30\).
b) \(3-\left(\dfrac{7}{5}\right)^n\le0\)
\(\Leftrightarrow-\left(\dfrac{7}{5}\right)^n\le-3\)
\(\Leftrightarrow\left(\dfrac{7}{5}\right)^n\ge3\)\(\Leftrightarrow n\ge log^3_{\dfrac{7}{5}}\)
\(\Rightarrow\)\(n\in\left\{4;5;6;7;...\right\}\Rightarrow n=4\)
c) \(1-\left(\dfrac{4}{5}\right)^n\ge0,97\)
\(\Leftrightarrow-\left(\dfrac{4}{5}\right)^n\ge-0,3\)
\(\Leftrightarrow\left(\dfrac{4}{5}\right)^n\le0,3\)\(\Leftrightarrow n\ge log^{0,3}_{\dfrac{4}{5}}\)
\(\Rightarrow n\in\left\{6;7;8;9...\right\}\Rightarrow n=6\)
d)\(\left(1+\dfrac{5}{100}\right)^n\ge2\)
\(\Leftrightarrow1,05^n\ge2\)
\(\Rightarrow n\in\left\{15;16;17;18;...\right\}\Rightarrow n=15\)