Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đặt \(\overline{abc}+\overline{def}=1600\)
\(\Rightarrow c+f=10;b+e=9;a+d=15\Rightarrow a+b+c+d+e+f=10+9+15=34\)
Ta nhận thấy vị trí của các chữ số thay thế ba dấu sao trong số trên đều ở hàng chẵn và vì ba số đó đôi một khác nhau, lấy từ tập hợp
{1; 2; 3} nên tổng của chúng luôn bằng 1 + 2 + 3 = 6.
Mặt khác 396 = 4.9.11 trong đó 4; 9; 11 đôi một nguyên tố cùng nhau nên ta cần chứng minh A = chia hết cho 4; 9 và 11.
Thật vậy:
+) A 4 vì số tạo bởi hai chữ số tận cùng của A là 16.
+) A 9 vì tổng các chữ số chia hết cho 9.
+) A 11 vì hiệu số giữa tổng các chữ số hàng chẵn và tổng các chữ số hàng lẻ là 0.
Vậy A chia hết cho 396.
nhấn vào đây nhé Cho số 155*710*4*16 có 12 chữ số. Chứng minh rằng nếu thay các dấu * bởi các chữ số khác nhau trong ba chữ số 1, 2, 3 một cách tùy ý thì số đó luôn chia hết cho 396.
chúc năm mới vui vẻ
1001 phải là 2 số tự nhiên tiên tiếp
Nên \(\orbr{\begin{cases}n+1=1000\\n+1=1002\end{cases}\Rightarrow\orbr{\begin{cases}n=999\\x=1001\end{cases}}}\)
Thay n=999 ta có:
1+2+3+.....+999=\(\frac{\left(999+1\right)999}{2}=499500\)(loại)
Thay n=1001 ta có:
\(1+2+3+...+1001=\frac{\left(1001+1\right)1001}{2}=501501\)(chọn)
Vậy tổng cần tìm là: 501501
ta gọi số cần tìm là abcd (có gạch trên đầu abcd)
theo đề ra ta có n2 = abcd (có gạch trên đầu abcd)
và ⎧⎩⎨⎪⎪a=d−2b=d−3c=d−1{a=d−2b=d−3c=d−1
vì n2 có tận cùng ∈ {0;1;4;5;6;9} ⇒ d ∈{0;1;4;5;6;9}
mà a ≥ 1 => d ≥ 3 ⇒ d ∈ {4;5;6;9}
=> abcd ( có gạch trên đầu ) ∈ {2134;3245;4356;7689}
thử lại ta thấy chỉ có 4356 = 662 là thỏa mãn
vậy số cần tìm là 4356
bn ơi chắc gì đã là 1441 có khi là 1551, 1661, 1771, 1881, 199 ko bài này mình làm rồi nhưng mình không nhớ cách giải
1600 thì bằng 900+700 ,vì 900+700=1600 nha
bạn ơi hàng đơn vị khác 0 mà