K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017
 
 
Ta có : A = 1012 + 1022 + .....  + 2002

=> A = 101 . (102 - 1) + 102.(103 - 1) + .... + 200.(201 - 1)

=> A = 101.102 - 101 + 102.103 - 102 + ..... + 200.201 - 200

=> A = (101.102 + 102.103 + ..... + 200.201) - (101 + 102 + ..... + 200)

=> A = 2706800 - 15050

=> A = 2691750

 Đúng 0
 
9 tháng 7 2017

Ta có : A = 1012 + 1022 + .....  + 2002

=> A = 101 . (102 - 1) + 102.(103 - 1) + .... + 200.(201 - 1)

=> A = 101.102 - 101 + 102.103 - 102 + ..... + 200.201 - 200

=> A = (101.102 + 102.103 + ..... + 200.201) - (101 + 102 + ..... + 200)

=> A = 2706800 - 15050

=> A = 2691750

9 tháng 6 2017

Giải:

a, \(B=1^2+2^2+3^2+...+99^2+100^2.\)

\(B=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)+100\left(101-1\right).\)

\(B=1.2-1.1+2.3-1.2+3.4-1.3+...+99.100-1.99+100.101-1.100.\)

\(B=\left(1.2+2.3+3.4+...+99.100+100.101\right)-\left(1+2+3+...+100\right).\)

\(B=\dfrac{\left[1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+100.101\left(102-99\right)\right]}{3}+\dfrac{100\left(100+1\right)}{2}.\)

\(B=\dfrac{\left(1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+100.101.102-99.100.101\right)}{3}+5050.\)

\(B=\dfrac{100.101.102}{3}+5050.\)

\(B=343400+5050=348450.\)

Vậy \(B=348450.\)

\(C=...\) (làm tương tự con \(B\)).

9 tháng 6 2017

\(D=...\) (hình như đề sai).

\(T=1.100+2.99+3.98+...+99.2+100.1.\)

\(T=1.100+2.\left(100-1\right)+3.\left(100-2\right)+...+99\left(100-98\right)+100\left(100-99\right).\)

\(T=1.100+100.2+1.2+100.3+2.3+...+100.99+98.99+100.100+99.100.\)

\(T=100\left(1+2+3+...+100\right)-\left(1.2+2.3+3.4+...+99.100\right).\)

\(T=100.\dfrac{100.101}{2}-\dfrac{99.100.101}{3}.\)

\(T=100.5050-333300.\)

\(T=505000-333300=171700.\)

Vậy \(T=171700.\)

\(S=1.2.3+2.3.4+3.4.5+...+98.99.100.\)

\(4S=4\left(1.2.3+2.3.4+3.4.5+...+98.99.100\right).\)

\(4S=1.2.3.4+2.3.4.4+3.4.5.4+...+98.99.100.4.\)

\(4S=1.2.3\left(5-1\right)+2.3.4\left(6-2\right)+...+98.99.100\left(101-97\right).\)

\(4S=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+98.99.100.101-97.98.99.100.\)

\(4S=\left(1.2.3.4-1.2.3.4\right)+\left(2.3.4.5-2.3.4.5\right)+...+\left(97.98.99.100-97.98.99.100\right)+98.99.100.101.\)

\(4S=0+0+...+0+98.99.100.101.\)

\(4S=98.99.100.101.\)

\(4S=97990200.\)

\(\Rightarrow S=\dfrac{97990200}{4}=24497550.\)

Vậy \(S=24497550.\)

~ Học tốt!!! ~

19 tháng 2 2017

nhiều quá vậy ?

19 tháng 2 2017

Gọi A là biểu thức ta có: 
CÂU1 :A = 1.2+2.3+3.4+......+99.100 
          3A = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3 
          3A = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98) 
          3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100 
          3A = 99.100.101 
          A = 99.100.101 : 3 
          A = 33.100.101 
          A = 333 300

21 tháng 10 2018

\(S_n=1.1!+2.2!+3.3!+...+n.n!\)

\(\text{Ta có:}\) \(1.1!=2!-1!\)

\(2.2!=3!-2!\)

\(3.3!=4!-3!\)

.......

\(n.n!=\left(n+1\right)!-n!\)

Cộng vế với vế ta đc: 

\(S_n=1.1!+2.2!+3.3!+...+n.n!=2!-1!+3!-2!+4!-3!+...+\left(n+1\right)!-n!\)

\(=\left(n+1\right)!-1!=\left(n+1\right)!-1\)

21 tháng 10 2018

thank bn

13 tháng 11 2016

tham the 

14 tháng 11 2016

có giỏi thì làm một câu xem nào

25 tháng 12 2018

Tính số hẳn ra à

Mik chịu chết

Học tốt ~

10 tháng 9 2019

Ngu như con bò

10 tháng 9 2019

vay sao chi