K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)    ( 1 )

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)( 2 )

Lấy ( 2 ) - ( 1 ) ta được :

\(2A=1-\frac{1}{3^{100}}\)

\(\Rightarrow A=\frac{1-\frac{1}{3^{100}}}{2}\)

18 tháng 4 2017

3A=1+1/3+1/3^2+...........+1/3^99

3A-A=1-1/3^100

A=(1-1/3^100):2

18 tháng 4 2017

A = 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^100

A : 3 = 1/3. ( 1/3 + 1/3^2 + ... + 1/3^100 )

A : 3 = 1/3^2 + 1/3^3 + ... + 1/3^101

A - A : 3 = 1/3 + 1/3^2 + ... + 1/3^100 - 1/3^2 - 1/3^3 - ... - 1/3^101

A . 2/3 = (1/3^2 - 1/3^2) + (1/3^3 - 1/3^3) + ... + (1/3^100 - 1/3^100) + ( 1/3 - 1/3^101 )

A . 2/3 = 0 + 0 + 0 + ... + 0 + 1/3 - 1/3^101

A . 2/3 = 1/3 - 1/3^101

=> A = 1/2 - 1/3^100.2

22 tháng 4 2018

\(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)

\(A=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{99\cdot100}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(A=\frac{1}{2}\cdot\frac{1}{4949}\)

\(A=\frac{1}{9898}\)

3 tháng 8 2019

Số số hạng là : (100-1):1+1=100(số hạng)

A=(100+1):2×100=5050

Số số hạng là : (100-2):2+1=50(số hạng)

B=(100+2):2×50=2550

Số số hạng là : (100-1):2+1=50,5(số hạng)

C=(100+1):2×50,5=2550,25