Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\text{Δ}=4^2-4\cdot\left(-1\right)\cdot\left(m+3\right)=16+4m+12=4m+28\)
Để phương trình có hai nghiệm phân biệt thì 4m+28>0
=>m>-7
mình nghĩ pt (P) : y = ax^2 - bx + c chứ ?
a, (P) đi qua điểm A(0;-1) <=> \(c=-1\)
(P) đi qua điểm B(1;-1) <=> \(a-b+c=-1\)(1)
(P) đi qua điểm C(-1;1) <=> \(a+b+c=1\)(2)
Thay c = -1 vào (1) ; (2) ta được : \(a-b=0;a+b=2\Rightarrow a=1;b=1\)
Vậy pt Parabol có dạng \(x^2-x-1=y\)
Bài 1b
(P) đi qua điểm A(8;0) <=> \(64a-8b+c=0\)
(P) có đỉnh I(6;12) \(\Rightarrow\hept{\begin{cases}-\frac{b}{2a}=6\\36a-6b+c=-12\end{cases}}\Rightarrow a=3;b=-36;c=96\)
Vậy pt Parabol có dạng : \(9x^2+36x+96=y\)
tương tự nhé
bài 3:
a: Theo đề, ta có hệ:
\(\left\{{}\begin{matrix}a-4+c=3\\16a+16+c=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{19}{15}\\c=\dfrac{124}{15}\end{matrix}\right.\)
b: Theo đề, ta có:
\(\left\{{}\begin{matrix}\dfrac{4}{2a}=2\\a+4+c=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\c+4=4\end{matrix}\right.\Leftrightarrow a=1;c=0\)
c: Theo đề, ta có:
\(\left\{{}\begin{matrix}\dfrac{4}{2a}=4\\-\dfrac{b^2-4ac}{4a}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\\dfrac{16-4\cdot1\cdot c}{4}=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\16-4c=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\c=6\end{matrix}\right.\)