K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2021

A B C H M

( hình hơi xấu :V )

Giả sử tam giác ABC vuông tại A( AB < AC)   có AM là trung tuyến, AH là đường cao

Vì đường cao và đường trung tuyến ứng với cạnh huyền của tam giác tỷ lệ với 12 :13 , do đó đặt AH = 12x,  AM =13 x

Suy ra BM = CM = 13x

Áp dụng định lý Pytago cho \(\Delta AHM\)có:

HM2= AM2 -  AH2 =  (13x)2 - (12x)2 = (25 x)2 

=> HM = 5x 

Do đó HC =  5x + 13x = 18x 

Dễ thấy \(\Delta ABC\)Đồng dạng  \(\Delta HAC\)(g.g)

=> \(\frac{AB}{AC}\)\(\frac{HA}{HC}\)\(\frac{12x}{18x}\)\(\frac{2}{3}\)

=> kl

27 tháng 2 2016

Làm ơn cho tớ hỏi đường cao có phải là đường cao ứng với cạnh huyền không?

27 tháng 1 2021

6,5 cm nha nb

12 tháng 1 2016

\(Ad\) \(Py-ta-go\) \(ta\) \(có:\)

\(5^2+12^2=a^2\)\(a-c.huyền\)

\(\Rightarrow a^2=25+144=169\)

\(\Rightarrow a=13\)

\(\Delta vuông\)

\(\Rightarrow t.tuyến=\frac{1}{2}c.huyền\)

\(\Rightarrow t.tuyến=\frac{c.huyền}{2}=\frac{13}{2}=6,5cm\)

21 tháng 4 2017

Bài giải:

Gọi a là độ dài cạnh huyền của tam giác vuông.

Theo định lí Pitago ta có:

a2 = 72 + 242 = 49 + 576 = 625

Nên a = 25cm

Trung tuyến ứng với cạnh huyền có độ dài bằng nửa độ dài cạnh huyền. Nên trung tuyến ứng với cạnh huyền có độ dài là 12,5cm.

12 tháng 10 2017

Gọi a là độ dài cạnh huyền của tam giác vuông.

Theo định lí Pitago ta có:

a2 = 72 + 242 = 49 + 576 = 625

Nên a = 25cm

Trung tuyến ứng với cạnh huyền có độ dài bằng nửa độ dài cạnh huyền. Nên trung tuyến ứng với cạnh huyền có độ dài là 12,5cm.



7 tháng 8 2016

Tính chất : trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.

Áp dụng t/c trên : Độ dài đường trung tuyến : \(\frac{\sqrt{7^2+24^2}}{2}\)

7 tháng 8 2016

Áp dụng định lý Py-ta-go ta tính được cạnh huyền bằng \(\sqrt{7^2+24^2}\)=25

Ta lại có tính chất trong tam giác vuông đường trung tuyến ứng với cạnh huyền = 1/2 cạnh huyền 

nên đường trung tuyến =\(\frac{25}{2}\)=12.5(cm)

Vậy cạnh huyền=12.5cm