Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{AB}{CD}=\frac{125}{625}=\frac{1}{5}\)
\(b,\) Đổi \(13,5dm=135cm\)
\(\frac{EF}{E'F'}=\frac{45}{135}=\frac{1}{3}\)
Vậy .................
đây là toán đại mà,tỉ lệ thức đo,từ đề ta suy ra tỉ lệ thức MN/3=PQ/5
sau đó tính như toán lớp 7 đó
a: Xét ΔABC có BD là phân giác
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)
=>\(\dfrac{AD}{12}=\dfrac{CD}{14}\)
=>\(\dfrac{AD}{6}=\dfrac{CD}{7}\)
mà AD+CD=AC=9cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{7}=\dfrac{AD+CD}{6+7}=\dfrac{9}{13}\)
=>\(AD=\dfrac{9}{13}\cdot6=\dfrac{54}{13}\left(cm\right);CD=\dfrac{9}{13}\cdot7=\dfrac{63}{13}\left(cm\right)\)
b: Sửa đề: b) Tính tỉ số diện tích của tam giác ABD và tam giác BDC
Vì \(\dfrac{AD}{6}=\dfrac{CD}{7}\)
nên \(\dfrac{AD}{CD}=\dfrac{6}{7}\)
=>\(\dfrac{S_{ABD}}{S_{CBD}}=\dfrac{6}{7}\)
=>\(S_{ABD}=\dfrac{6}{7}\cdot S_{CBD}\)
a) Tỉ số của các đoạn thẳng được tính như sau: \(\dfrac{{MN}}{{PQ}} = \dfrac{3}{9} = \dfrac{1}{3};\dfrac{{PQ}}{{MN}} = \dfrac{9}{3} = 3\)
Vậy: \(\dfrac{{MN}}{{PQ}} = \dfrac{1}{3};\dfrac{{PQ}}{{MN}} = 3\)
b) Đổi 10dm = 100cm
Tỉ số của các đoạn thẳng được tính như sau: \(\dfrac{{EF}}{{HK}} = \dfrac{{25}}{{100}} = \dfrac{1}{4};\dfrac{{HK}}{{EF}} = \dfrac{{100}}{{25}} = 4\)
Vậy: \(\dfrac{{EF}}{{HK}} = \dfrac{1}{4};\dfrac{{HK}}{{EF}} = 4\)