Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 2999=x => x99-3000x98+3000x97-...+3000x-1
f(x) = x99 - (x+1)x98+(x+1)x97-...+(x+1)x-1
=x99-x99-x98+x98+x97-...x2+x-1=x-1=2999-1=2998
Vậy : f(2999)= 2998
\(\frac{4^{19}+8^7}{256^4+32^2}=\frac{\left(2^2\right)^{19}+\left(2^3\right)^7}{\left(2^8\right)^4+\left(2^5\right)^2}=\frac{2^{38}+2^{21}}{2^{32}+2^{10}}=\frac{2^{21}.\left(2^{17}+1\right)}{2^{10}.\left(2^{22}+1\right)}=\frac{2^{11}.\left(2^{17}+1\right)}{2^{22}+1}=\frac{2^{28}+2^{11}}{2^{22}+1}\)
Bài làm
\(\frac{\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)}{\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}\right)}\)
\(=\frac{\left(\frac{2}{2}+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}\right)}{\left(\frac{2}{2}-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}\right)}\)
\(=\frac{\frac{1}{2}\left(2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}\right)}{\frac{1}{2}\left(2-1+\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}\right)}\)
\(=\frac{3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}}{1+\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}}\)
\(=\frac{\frac{24}{8}+\frac{4}{8}+\frac{2}{8}+\frac{1}{8}}{\frac{8}{8}+\frac{4}{8}-\frac{2}{8}+\frac{1}{8}}\)
\(=\frac{31}{8}\div\frac{11}{8}\)
\(=\frac{31}{8}\cdot\frac{8}{11}\)
\(=\frac{31}{11}\)
P/S: Trông không thuận tiện lắm :/
\(3999+2999+2+3999+2999+2\\ =\left(3999+2999+2\right)+\left(3999+2999+2\right)\\ =2\cdot\left(3999+2999+2\right)\\ =2\cdot7000\\ =14000\)
\(3999+2999+2+3999+2999+2\)
= \(\left(3999+3999\right)+\left(2999+2999\right)+\left(2+2\right)\)
= \(7998+5998+4\)
= \(13996+4\)
= \(14000\).
Chúc bạn học tốt!