Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
T= 1 - 1/2 + 1/2 - 1/3 + ......+ 1/99 - 1/100
= 1 - 1/100
= 99/100
\(t=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(t=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(t=1-\frac{1}{100}=\frac{99}{100}\)
Vậy \(t=\frac{99}{100}\)
ta có : t = 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/98.99 + 1/99.100
=> t = 1/1 - 1/2 + 1/2 - 1/3 + .... + 1/99 - 1/100
=> t = 1 - 1/100
=> t = 99/100
T=1/1x2+1/2x3+1/3x4+....................+1/98x99+1/99x100
T=1-1/2+1/2-1/3+..............+1/98-1/99+1/99-1/100
T=1-1/100
T=99/100
T= 1/1.2+1/2.3+1/3.4+...+1/99.100
T=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
T=1- 1/100
T= 99/100
đúng cho mình nha bạn
Bài này đơn giản mà bạn
Biến đôi T = \(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}\)
\(T=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-......-\frac{1}{100}\)
\(T=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)
T=1/2+1/6+1/12+..............+1/9702+1/9900
T=1/1x2+1/2x3+1/3x4+...........+1/98x99+1/99x100
T=1-1/2+1/2-1/3+1/3-1/4+.........+1/98-1/99+1/99-1/100
T=1-1/100
T=99/100
Vậy T=99/100
Giải :
Đặt : A = \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{9702}+\frac{1}{9900}\)
\(\Rightarrow A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{98.99}+\frac{1}{99.100}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A=1-\frac{1}{100}=\frac{99}{100}\)
\(\frac{1}{2}+\frac{1}{6}+............+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+............+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...........+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
ta có:
1/2+1/6+...+1/9900
=1/1.2+1/2.3...+1/99.100
=1-1/2+1/2-1/3+1/3-...+1/99-1/100
=1-1/100
=99/100
\(A=\frac{1}{2}+\frac{1}{6}+\cdot\cdot\cdot+\frac{1}{9900}\)
\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+\cdot\cdot\cdot+\frac{1}{99\times100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
`A=1/2+1/6+1/12+1/20+1/30+...+1/9900`
`=1/(1xx2)+1/(2xx3)+1/(3xx4)+1/(4xx5)+1/(5xx6)+...+1/(99xx100)`
`=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+...+1/99-1/100`
`=1/1-1/100`
`=100/100-1/100`
`=99/100`
A=1/2+1/6+1/12+1/20+1/30+...+1/9900
=1/(1��2)+1/(2��3)+1/(3��4)+1/(4��5)+1/(5��6)+...+1/(99��100)=1/(1xx2)+1/(2xx3)+1/(3xx4)+1/(4xx5)+1/(5xx6)+...+1/(99xx100)
=1/1−1/2+1/2−1/3+1/3−1/4+1/4−1/5+1/5−1/6+...+1/99−1/100=1/1−1/2+1/2−1/3+1/3−1/4+1/4−1/5+1/5−1/6+...+1/99−1/100
=1/1−1/100=1/1−1/100
=100/100−1/100=100/100−1/100
=99/100=99/100