\(\tan^21^o.\tan^22^o.\tan^23^o....\tan^289^o\)

Chỉ cần đáp số thôi các bạn ơ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2015

\(\tan a.\cot a=1\Rightarrow\tan a.\tan\left(90^o-a\right)=1\)

\(...=\left(\tan1.\tan89\right)^2.\left(\tan2.\tan88\right)^2.....\tan^245^o=1.1....\left(\frac{\sqrt{2}}{2}\right)^2=\frac{1}{2}\)

29 tháng 6 2019

sin20<sin70

cos25 > cos65*15'

tan73*20' >tan45

cotg2 >cotg73*40'

tan25>sin25

cotg32 >cos32

3 tháng 8 2018

4. \(D=sin^21^o+sin^22^o+sin^23^o+...+sin^287^o+sin^288^o+sin^289^o=\left(sin^21^o+sin^289^o\right)+\left(sin^22^o+sin^288^o\right)+...+\left(sin^244^o+sin^246^o\right)+sin^245^o=1+1+1+...+1+1+0,5=44,5\)

3 tháng 8 2018

\(5.E=cos^21^o+cos^22^o+cos^23^o+...+cos^287^o+cos^288^o+cos^289^o=\left(cos^21^o+cos^289^o\right)+\left(cos^22^o+cos^288^o\right)+...+\left(cos^244^o+cos^246^o\right)+cos^245^o=1+1+1+...+1+0,5=1.44+0,5=44,5\)

NV
10 tháng 11 2019

\(A=\frac{2cos^2a-\left(sin^2a+cos^2a\right)}{sina+cosa}=\frac{cos^2a-sin^2a}{sina+cosa}=\frac{\left(cosa-sina\right)\left(cosa+sina\right)}{sina+cosa}=cosa-sina\)

\(P=tan1.tan89.tan2.tan88...tan44.tan46.tan45\)

\(=tan1.cot1.tan2.cot2...tan44.cot44.tan45\) (công thức \(tanx=cot\left(90^0-x\right)\))

\(=1.1.1....1=1\)

NV
13 tháng 11 2019

\(2cos^2x-cos^2x-sin^2x=cos^2x-sin^2x\) , phép trừ của lớp 1 là \(2-1=1\) thôi mà bạn?

Còn \(tan45^0=1\) là 1 gía trị lượng giác cơ bản ai cũng nên biết chứ nhỉ? Ít nhất giá trị của các góc đặc biệt như 30 ; 45; 60; 90 cũng nên thuộc :(

19 tháng 8 2021

Ta có : \(cos^215^o=sin^275^o;cos^225^o=sin^265^o;cos^235^o=sin^255^o;\frac{cos^245^o}{2}=\frac{sin^245^o}{2}\)

Khi đó \(N=sin^275^o+cos^275^o-\left(sin^265^o+cos^265^o\right)+sin^255^o+cos^255^o-\left(\frac{sin^245^0+cos^245^o}{2}\right)\)

Áp dụng công thức \(sin^2a+cos^2a=1\)ta được 

\(N=1-1+1-\frac{1}{2}=\frac{1}{2}\)

Vậy N = 1/2 

câu b chờ chút mình làm cho nhé <33

19 tháng 8 2021

Ta có : \(cos^21^o=sin^289^o;cos^22^o=sin^288^o;...;cos^244^o=sin^246^o;\frac{cos^245^o}{2}=\frac{sin^245^o}{2}\)

Khi đó \(A=\frac{sin^245^o+cos^245^o}{2}+\left(sin^246^0+cos^246^o\right)+...+\left(sin^289^o+cos^289^o\right)\)

Áp dụng ct \(sin^2a+cos^2a=1\)ta được \(A=\frac{1}{2}+1+1+...+1=...\)

P/S : bạn tự đếm xem bao nhiêu cặp nhé ;) tìm ssh á