Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đặt \(A=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
nhân cả hai vế với \(\sqrt{2}\), ta được:
\(\sqrt{2}A=\sqrt{2}\sqrt{4-\sqrt{7}}-\sqrt{2}\sqrt{4+\sqrt{7}}\)
\(=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(1-\sqrt{7}\right)^2}-\sqrt{\left(1+ \sqrt{7}\right)^2}\)
\(=\left|1-\sqrt{7}\right|-\left|1+\sqrt{7}\right|\)
\(=\sqrt{7}-1-\sqrt{7}-1\)
\(=-2\)
\(\Rightarrow A=-\frac{2}{\sqrt{2}}=-\sqrt{2}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{25-2..5\sqrt{3}+3}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}\)
\(=\sqrt{5\sqrt{3}+25-5\sqrt{3}}\)
\(=\sqrt{25}=5\)
= \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
= \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28+10\sqrt{3}}}}\)
= \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5+\sqrt{3}\right)^2}}}\)
= \(\sqrt{4+\sqrt{5\sqrt{3}+25+5\sqrt{3}}}\)
=\(\sqrt{4+\sqrt{25+10\sqrt{3}}}\)
\(\sqrt{4+\sqrt{5\sqrt{3}--5\sqrt{48-11-1\sqrt{7+4\sqrt{3}}}}}\)
\(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}=6\sqrt{5}-6\sqrt{5}+4\sqrt{5}=4\sqrt{5}\)
\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}=\left(2\sqrt{7}-2\sqrt{2}.\sqrt{7}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
\(=14-14\sqrt{2}+7+14\sqrt{2}=21\)
\(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}=6\sqrt{3}-12\sqrt{3}+20\sqrt{3}=14\sqrt{3}\)
câu tiếp tương tự câu thứ 2 nha
=\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{4-2-\sqrt{2+\sqrt{3}}}.\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{4-2-\sqrt{3}}=\sqrt{4-3}=1\)
\(=\sqrt{4+\sqrt{5.\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}=\sqrt{4+\sqrt{5.\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}.\)
\(=\sqrt{4+\sqrt{5.\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}=\sqrt{4+5}=3\)