Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/\(\sqrt{24-x^2}-\sqrt{8-x^2}=2\)
\(\Rightarrow2A=\left(\sqrt{24-x^2}+\sqrt{8-x^2}\right)\left(\sqrt{24-x^2}-\sqrt{8-x^2}\right)\)
\(\Leftrightarrow2A=16\Rightarrow A=8\)
2/ ĐKXĐ : \(x\ge5\)
\(\sqrt{x-2}+\sqrt{x-5}=\sqrt{x+3}\)
\(\Rightarrow\left(\sqrt{x-2}+\sqrt{x-5}\right)^2=x+3\)
\(\Leftrightarrow2x+2\sqrt{x-2}.\sqrt{x-5}-7=x+3\)
\(\Rightarrow2\sqrt{x-2}.\sqrt{x-5}=10-x\)
\(\Leftrightarrow4\left(x-2\right)\left(x-5\right)=x^2-20x+100\)
\(\Leftrightarrow3x^2-8x-60=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-\frac{10}{3}\end{cases}}\)
Vì \(x\ge5\) nên x = 6 thỏa mãn đề bài.
Ta có: \(\left(\sqrt{24-x^2}+\sqrt{8-x^2}\right)\left(\sqrt{24-x^2}-\sqrt{8-x^2}\right)=\left(\sqrt{24-x^2}^2-\sqrt{8-x^2}^2\right)\)
\(\Rightarrow\left(\sqrt{24-x^2}+\sqrt{8-x^2}\right)2=24-x^2-\left(8-x^2\right)\)
\(\Rightarrow2A=16\)
\(\Rightarrow A=8\)
Vậy \(A=8\).
5.
\(\Leftrightarrow x^2+7-\left(x+4\right)\sqrt{x^2+7}+4x=0\)
Đặt \(\sqrt{x^2+7}=t>0\)
\(\Rightarrow t^2-\left(x+4\right)t+4x=0\)
\(\Delta=\left(x+4\right)^2-16x=\left(x-4\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\frac{x+4+x-4}{2}=x\\t=\frac{x+4-x+4}{2}=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+7}=x\left(x\ge0\right)\\\sqrt{x^2+7}=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+7=x^2\left(vn\right)\\x^2+7=16\end{matrix}\right.\)
Câu 6 bạn coi lại đề
4.
ĐKXĐ: ...
Đặt \(\sqrt{x+3}=a\ge0\)
\(\Rightarrow x+a=\sqrt{5x^2-a^2}\)
\(\Rightarrow x^2+2ax+a^2=5x^2-a^2\)
\(\Rightarrow2x^2-ax-a^2=0\)
\(\Rightarrow\left(x-a\right)\left(2x+a\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=x\\a=-2x\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+3}=x\left(x\ge0\right)\\\sqrt{x+3}=-2x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=x^2\left(x\ge0\right)\\x+3=4x^2\left(x\le0\right)\end{matrix}\right.\)