Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2sin30^o-2cos60^o+tan45^o\)
\(=2\left(sin30^o-có60^o\right)+1\)
\(=2\left(sin30^o-sin30^o\right)+1=1\)
b) \(B=3sin^225^o+3sin^265^o-tan35^o+cot55^o-\frac{cot32^o}{tan58^o}\)
\(=3\left(sin^225^o+cos^225^o\right)-\left(tan35^o-cot55^o\right)-\frac{cot32^o}{cot32^o}\)
\(=3-\left(tan35^o-tan35^o\right)-1\)
\(=2\)
c) \(C=tan67^o-cos23^o+cos^216^p+cos^274^o-\frac{4cot37^o}{2tan53^o}\)
= \(tan67^o-tan67^o+sin^274^o+cos^274^o-\frac{4cot37^o}{2cot37^o}\)
\(=1-2=-1\)
d) \(D=2cot37^ocot53^o+sin^228^o-\frac{3tan54^o}{cot36^o}+sin^262^o\)
\(=2cot37^otan37^o+sin^228^o+cos^228^o-\frac{3tan54^o}{tan54^o}\)
\(=2+1-3=0\)
Mấy bài kiểu này bạn chỉ cần áp dụng tính chất tỉ số lượng giác của hai góc phụ nhau và các hệ thức trong bài tập số 14 (SGK - Tr.77) là sẽ ra thôi
Chúc bạn học tốt nhé!
a)
\(1+tan^2a=\frac{1}{cos^2a}\)
\(1+3^2=\frac{1}{cos^2a}\)
\(10=\frac{1}{cos^2a}\)
\(cos^2a=\frac{1}{10}\)
\(cosa=\pm\sqrt{\frac{1}{10}}=\pm\frac{1}{\sqrt{10}}\)
\(sin^2a+cos^2a=1\)
\(sin^2a+\frac{1}{10}=1\)
\(sin^2a=\frac{9}{10}\)
\(sina=\pm\sqrt{\frac{9}{10}}=\pm\frac{3}{\sqrt{10}}\)
Vì tan = 3 nên M có 2 trường hợp :
TH1 :
sin và cos cùng dương
\(\Rightarrow M=\frac{\frac{1}{\sqrt{10}}+\frac{3}{\sqrt{10}}}{\frac{1}{\sqrt{10}}-\frac{3}{\sqrt{10}}}\)
\(=\frac{\frac{4}{\sqrt{10}}}{-\frac{2}{\sqrt{10}}}\)
= -2
TH2 :
Cả sin và cos cùng âm
\(\Rightarrow M=\frac{-\frac{1}{\sqrt{10}}+\left(-\frac{3}{\sqrt{10}}\right)}{-\frac{1}{\sqrt{10}}-\left(-\frac{3}{\sqrt{10}}\right)}\)
=\(\frac{-\frac{4}{\sqrt{10}}}{\frac{2}{\sqrt{10}}}\)
= -2
b)
\(B=\frac{sin15+cos15}{cos15}-cot75\)
=\(\frac{sin15}{cos15}+\frac{cos15}{cos15}-cot75\)
=\(tan15+1-cot75\)
=\(cot75+1-cot75\)
= 1
\(\sin^225^o+\sin^265^o-\tan35^o+\cot55^o-\frac{\cot32^o}{tan58^o}\)
\(=\cos^265^o+\sin^265^o-\cot55^{^{ }o}+\cot55^o-\frac{\tan58^o}{\tan58^o}\)
\(=1-0-1\)
\(=0\)
nhớ k cho mik nha ^^