Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(=\sqrt{\left(\sqrt{\frac{7}{2}}+\sqrt{\frac{3}{2}}\right)^2}+\sqrt{\left(\sqrt{\frac{7}{2}}-\sqrt{\frac{3}{2}}\right)^2}-2\sqrt{4\sqrt{7}}=\frac{7}{2}+\frac{3}{2}+\frac{7}{2}-\frac{3}{2}-2\sqrt{4\sqrt{7}}\)
\(=7-2\sqrt{4\sqrt{7}}\)
cho hỏi tại sao có số \(\frac{7}{2};\frac{3}{2}\)zậy chỉ với
b: Ta có: \(\left(\sqrt{7-3\sqrt{5}}\right)\cdot\left(7+3\sqrt{5}\right)\cdot\left(3\sqrt{2}+\sqrt{10}\right)\)
\(=\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\left(7+3\sqrt{5}\right)\)
\(=4\left(7+3\sqrt{5}\right)\)
\(=28+12\sqrt{5}\)
Lời giải:
a.
$A=\sqrt{8+\sqrt{55}}-\sqrt{8-\sqrt{55}}-\sqrt{125}$
$\sqrt{2}A=\sqrt{16+2\sqrt{55}}-\sqrt{16-2\sqrt{55}}-\sqrt{250}$
$=\sqrt{(\sqrt{11}+\sqrt{5})^2}-\sqrt{(\sqrt{11}-\sqrt{5})^2}-5\sqrt{10}$
$=|\sqrt{11}+\sqrt{5}|-|\sqrt{11}-\sqrt{5}|-5\sqrt{10}$
$=2\sqrt{5}-5\sqrt{10}$
$\Rightarrow A=\sqrt{10}-5\sqrt{5}$
b.
$B=\sqrt{7-3\sqrt{5}}.(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$
$B\sqrt{2}=\sqrt{14-6\sqrt{5}}(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$
$=\sqrt{(3-\sqrt{5})^2}(7+3\sqrt{5}).\sqrt{2}(3+\sqrt{5})$
$=(3-\sqrt{5})(7\sqrt{2}+3\sqrt{10})(3+\sqrt{5})$
$=(3^2-5)(7\sqrt{2}+3\sqrt{10})$
$=4(7\sqrt{2}+3\sqrt{10})=28\sqrt{2}+12\sqrt{10}$
$\Rightarrow B=28+12\sqrt{5}$
c.
$C=\sqrt{2}(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{6+\sqrt{35}}$
$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{12+2\sqrt{35}}$
$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{(\sqrt{7}+\sqrt{5})^2}
$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})(\sqrt{7}+\sqrt{5})$
$=(7-5)(6-\sqrt{35})$
$=2(6-\sqrt{35})=12-2\sqrt{35}$
Đặt \(a=\sqrt{6-\sqrt{35}};b=\sqrt{6+\sqrt{35}}\left(a;b\ge0\right)\)
Ta có hpt: \(\left\{{}\begin{matrix}a^x+b^x=12\\a^2+b^2=12\end{matrix}\right.\)\(\Rightarrow x=2\)
Vậy pt có tập nghiệm là x=2.
Akai HarumaNguyễn Việt LâmMysterious PersonDƯƠNG PHAN KHÁNH DƯƠNG Kiểm tra giùm e xem có đúng không? Sao thấy dễ thế.
Đặt \(\left(\sqrt{6-\sqrt{35}}\right)^x=a>0\Rightarrow\left(\sqrt{6+\sqrt{35}}\right)^x=\dfrac{1}{a}\)
Pt trở thành: \(a+\dfrac{1}{a}=12\Leftrightarrow a^2-12a+1=0\Rightarrow\left[{}\begin{matrix}a=6+\sqrt{35}\\a=6-\sqrt{35}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left(\sqrt{6-\sqrt{35}}\right)^x=\left(6-\sqrt{35}\right)^{\dfrac{x}{2}}=6+\sqrt{35}\\\left(\sqrt{6-\sqrt{35}}\right)^x=\left(6-\sqrt{35}\right)^{\dfrac{x}{2}}=6-\sqrt{35}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left(6-\sqrt{35}\right)^{\dfrac{x}{2}}=\left(6-\sqrt{35}\right)^{-1}\\\left(6-\sqrt{35}\right)^{\dfrac{x}{2}}=\left(6-\sqrt{35}\right)^1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{x}{2}=-1\\\dfrac{x}{2}=1\end{matrix}\right.\) \(\Rightarrow x=\pm2\)
1,\(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
2, (tương tự ý 1 cũng tách thành hằng đẳng thức \(\sqrt{46-6\sqrt{5}}=\sqrt{\left(3\sqrt{5}-1\right)^2}\)và \(\sqrt{29-12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}\)
3,\(\left(\sqrt{2}-\sqrt{9}\right)\left(\sqrt{\left(3+\sqrt{2}\right)^2}\right)=\left(\sqrt{2}-3\right)\left(\sqrt{2}+3\right)=2-9=-7\)
4, tương tự ý 3
\(\left(2-\frac{\sqrt{15}}{\sqrt{35}}-\frac{\sqrt{6}}{\sqrt{14}}\right)\left(\sqrt{\frac{3}{7}+2}\right)\)
\(=\left(2-\frac{\sqrt{21}}{7}-\frac{\sqrt{21}}{7}\right)\left(\frac{\sqrt{119}}{7}\right)\)
\(=\left(\frac{14-2\sqrt{21}}{7}\right)\left(\frac{\sqrt{119}}{7}\right)\)
\(=\frac{2\sqrt{119}-2\sqrt{51}}{7}\)
P= √(6+√35)^2 *2*(√7-√5)*√(6-√35)
P=(√(6+√35))*(√(6-√35))*2*(√7-√5)
P= √(6+√35)*2*(√7-√5)
P=√(12+2√35)*(√7-√5)
P=√(√7+√5)^2 *(√7-√5)
P=(√7+ √5)*(√7-√5)
P=2