K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2021

Ta thấy \(1-\dfrac{1}{n^2}=\dfrac{\left(n-1\right)\left(n+1\right)}{n^2}\) với mọi \(n>0\).

Từ đó \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{100^2}\right)=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}...\dfrac{99.101}{100}=\left(\dfrac{1}{2}.\dfrac{2}{3}...\dfrac{99}{100}\right).\left(\dfrac{3}{2}.\dfrac{4}{3}...\dfrac{101}{100}\right)=\dfrac{1}{100}.\dfrac{101}{2}=\dfrac{101}{200}\).

cảm ơn bạn

19 tháng 4 2017

\(A=4.\dfrac{25}{16}+25.\left[\dfrac{9}{16}:\dfrac{125}{64}\right]:\dfrac{-27}{8}\)

\(=\dfrac{25}{16}+25.\dfrac{36}{125}:\dfrac{-27}{8}=-\dfrac{137}{240}\left(1\right)\)

\(B=125.\left[\dfrac{1}{25}+\dfrac{1}{64}:8\right]-64.\dfrac{1}{64}\)

\(=125.\dfrac{89}{1600}:8-64.\dfrac{1}{64}=\dfrac{-67}{512}\left(2\right)\)

Vì (2) > (1) => B > A

29 tháng 8 2017

A = \(\dfrac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right)...\left(21^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)...\left(23^4+4\right)}\)

Xét: n4 + 4 = (n2+2)2 - 4n2 = (n2-2n+2)(n2+2n+2) = [(n-1)2+1][(x+1)2+1] nên: A = \(\dfrac{\left(0^2+1\right)\left(2^2+1\right)}{\left(2^2+1\right)\left(4^2+1\right)}.\dfrac{\left(4^2+1\right)\left(6^2+1\right)}{\left(6^2+1\right)\left(8^2+1\right)}.....\dfrac{\left(20^2+1\right)\left(22^2+1\right)}{\left(22^2+1\right)\left(24^2+1\right)}=\dfrac{1}{24^2+1}=\dfrac{1}{577}\)

B = \(\left(\dfrac{n-1}{1}+\dfrac{n-2}{2}+...+\dfrac{2}{n-2}+\dfrac{1}{n-1}\right):\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{n}\right)\)

Đặt C = \(\dfrac{n-1}{1}+\dfrac{n-2}{2}+...+\dfrac{n-\left(n-2\right)}{n-2}+\dfrac{n-\left(n-1\right)}{n-1}\)

= \(\dfrac{n}{1}+\dfrac{n}{2}+...+\dfrac{n}{n-2}+\dfrac{n}{n-1}-1-1-...-1\)

= \(n+\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}-\left(n-1\right)\)

= \(\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}+\dfrac{n}{n}\)

= \(n\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{n}\right)\)

Vậy ...

4 tháng 12 2018

a) 1/x(x + 1) + 1/(x + 1)(x + 2) + 1/(x + 2)(x + 3) + 1/(x + 3)(x + 4)

( 1/x - 1/x+1) + (1/x+1 - 1/x+2) + (1/x+2 - 1/ x+3) + 1/(x+3 - 1/x+4)

(1/x +1/x+4) - ( 1/x+2 - 1/x+2) - ( 1/x+3 - 1/x+3)

1/x +1/x+4

2x+4/x(x+4)

4 tháng 12 2018

Câu b bạn tách các mẫu thành nhân tử rồi làm như câu a nhé

1 tháng 10 2017

Ta có một số phân tích sau :  \(a^4\)\(+\)\(4\)\(=\)\(\left(a^2-2a+2\right)\)\(\left(a^2+2a+2\right)\)

Nhân mỗi biểu thức trong ngoặc ở cả tử thức với  \(16\)\(=\)\(2^4\), ta được :

\(A\)\(=\)\(\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(29^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(30^4+\frac{1}{4}\right)}\)

\(A\)\(=\)\(\frac{\left(2^4+4\right)\left(6^4+4\right)\left(10^4+4\right)...\left(58^4+4\right)}{\left(4^4+4\right)\left(8^4+4\right)\left(12^4+4\right)...\left(60^4+4\right)}\)

Kết hợp với phân tích nêu trên, khi đó :

\(A\)\(=\)\(\frac{\left(2^2-2.2+2\right)\left(2^2+2.2+2\right)\left(6^2-2.6+2\right)\left(6^2+2.6+2\right)....\left(58^2-2.58+2\right)\left(58^2+2.58+2\right)}{\left(4^2-2.4+2\right)\left(4^2+2.4+2\right)\left(8^2-2.8+2\right)\left(8^2+2.8+2\right)....\left(60^2-2.60+2\right)\left(60^2+2.60+2\right)}\)

\(\Rightarrow\)\(A\)\(=\)\(\frac{2.10.26.50.82.122....3250.3482}{10.26.50.82.122....3482.3722}\)\(=\)\(\frac{2}{3722}\)\(=\)\(\frac{1}{1861}\)

24 tháng 3 2017

\(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{100^2}\right)\)

\(=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)...\left(1-\dfrac{1}{100}\right)\left(1+\dfrac{1}{100}\right)\)

\(=\dfrac{1}{2}.\dfrac{3}{2}.\dfrac{2}{3}.\dfrac{4}{3}...\dfrac{99}{100}.\dfrac{101}{100}\)

\(=\dfrac{1.2...99}{2.3...100}.\dfrac{3.4...101}{2.3...100}\)

\(=\dfrac{1}{100}.\dfrac{101}{2}\)

\(=\dfrac{101}{200}\)

24 tháng 3 2017

nói mk học lớp 7,ko bt lm bài của Nguyễn Tấn Dũng mà bài lớp 8 nào cũng làm đc.Bài toán khó nào cũng giải đc ,mà câu của Nguyễn Tấn Dũng thì bó tay ,thật ra cậu đang nói sạo hay thật z Nguyễn Huy Túvuilolang???

21 tháng 4 2017

Giải bài 23 trang 46 Toán 8 Tập 1 | Giải bài tập Toán 8

21 tháng 4 2017

Giải bài 23 trang 46 Toán 8 Tập 1 | Giải bài tập Toán 8

NV
8 tháng 12 2018

\(A=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+2017}-\dfrac{1}{x+2018}\)

\(A=\dfrac{1}{x}-\dfrac{1}{x+2018}=\dfrac{2018}{x\left(x+2018\right)}\)

\(B=\dfrac{1}{4}\left(\dfrac{1}{x\left(x+2\right)}-\dfrac{1}{\left(x+2\right)\left(x+4\right)}+\dfrac{1}{\left(x+2\right)\left(x+4\right)}-\dfrac{1}{\left(x+4\right)\left(x+6\right)}+...+\dfrac{1}{\left(x+96\right)\left(x+98\right)}-\dfrac{1}{\left(x+98\right)\left(x+100\right)}\right)\)

\(B=\dfrac{1}{4}\left(\dfrac{1}{x\left(x+2\right)}-\dfrac{1}{\left(x+98\right)\left(x+100\right)}\right)=\dfrac{1}{4}\left(\dfrac{x^2+198x+9800-x^2-2x}{x\left(x+2\right)\left(x+98\right)\left(x+100\right)}\right)\)

\(B=\dfrac{196x+9800}{4x\left(x+2\right)\left(x+98\right)\left(x+100\right)}\)

8 tháng 12 2018

mình cũng vừa kiểm tra xong , kết quả đúng rồi đó