K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2015

\(\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{6}\right)+\left(1+\frac{1}{12}\right)+....+\left(1+\frac{1}{90}\right)\)

\(\left(1+1+1+....+1\right)+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{90}\right)\)(9 số 1)

= 9 + \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}\right)\)

\(9+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)

\(9+\left(1-\frac{1}{10}\right)=9+\frac{9}{10}=\frac{90}{10}+\frac{9}{10}=\frac{99}{10}\)

5 tháng 3 2017

3/2+7/6+13/12+21/20+31/30+43/42+57/56+73/72+91/90=99/10=9,9

6 tháng 12 2017

\(\frac{5^4.20^4}{25^5.4^5}\)

28 tháng 4 2018

Bài làm

Ta đặt M=1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91
Vậy M<1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90 
       M< 1/2+1/2x3+1/3x4+1/4x5+1/5x6+1/6x7+1/7x8+1/8x9+1/9x10
      M< (1-1/2) +(1/2-1/3) +(1/3-1/4) +(1/4-1/5) +(1/5-1/6) +(1/6-1/7) +(1/7-1/8) +(1/8-1/9) +(1/9-1/10)
     M< 1-1/10 < 9/10      (1)
     Vì 9/10 < 1    (2)
     Từ(1) và (2) ta có : 1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91<1

20 tháng 11 2017

\(\frac{7}{2}+\frac{7}{6}+\frac{7}{12}+\frac{7}{20}+\frac{7}{30}+\frac{7}{42}+\frac{7}{56}+\frac{7}{72}+\frac{7}{90}\)\(\frac{7}{90}\)

=\(\frac{7}{2+6+12+20+30+42+56+72+90}\)

=\(\frac{63}{10}\)

=6.3

2 tháng 7 2016

Giải:

Nên ta phải chứng minh:

=> ( điều phải chứng minh)

2 tháng 7 2016

Nên ta phải chứng minh:

=> ( điều phải chứng minh)

7 tháng 7 2018

\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\) \(\frac{89}{90}\)

\(=(1-\frac{1}{2})+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{30}\right)+\left(1-\frac{1}{42}\right)+\left(1-\frac{1}{56}\right)\) \(+\left(1-\frac{1}{72}\right)+\left(1-\frac{1}{90}\right)\)

\(=\left(1+1+1+1+1+1+1+1+1\right)-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)

\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\) 

\(=9-\frac{11}{10}\)

\(=\frac{79}{10}\)

~Học tốt nha~

7 tháng 7 2018

Đặt : \(A=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)

\(\Leftrightarrow A=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+......+\left(1-\frac{1}{90}\right)\)

\(\Leftrightarrow A=\left(1+1+....+1\right)-\left(\frac{1}{2}+\frac{1}{6}+....+\frac{1}{90}\right)\)

\(\Leftrightarrow A=9-\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)

\(\Leftrightarrow A=9-\left(1-\frac{1}{10}\right)\)

\(\Leftrightarrow A=9-\frac{9}{10}=\frac{81}{90}\)

bn vào câu hỏi tương tự sẽ có chi tiết . Nếu k thì bn hãy để ý mỗi tử đều bé hơn mẫu 1 đơn vị sau đó bn tách ra bằng cách lấy 1 trừ . VD: 5/6 bằng 1  -  1/6 . Đến đó đếm đc 9 chữ số 1 ta lấy 9 làm sbt trừ đi tổng của các ps ta tách đc . Khi đó thì bài toán quá đơn giản rồi . Chúc bn học tốt

7 tháng 8 2018

(1-1/2)+(1-1/6)+...+(1-1/90)

9+(1/2+1/6+...+1/90)

9+(1/1.2+1/2.3+...+1/9.10)

9+1-9/10=9/1/10=91/10

28 tháng 4 2018

\(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)

\(=1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+1-\frac{1}{30}+1-\frac{1}{42}+1-\frac{1}{56}+1-\frac{1}{72}+1-\frac{1}{90}\)

\(=8-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)

\(=8-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{!}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)

\(=8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)

\(=8-\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(=8-\frac{2}{5}=\frac{38}{5}\)

13 tháng 9 2020

 1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90
=1-1/2+1-1/6+1-1/12+1-1/20+1-1/30+1-1/42+1-1/56+1-1/72+1-1/90
=9 – (1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90)
=9 – [1/(1x2)+1/(2x3)+1/(3x4)+1/(4x5)+1/(5x6)+1/(6x7)+1/(7x8)+1/(8x9)+1/(9x10)]
=9 – ( 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10)
=9 – (1 – 1/10) = 9 – 9/10
= 81/10

23 tháng 10 2016

Gọi tổng dãy số hạng trên là A

A = 1 + \(\frac{1}{2}\)+ 1 + \(\frac{1}{6}\)+ 1 + \(\frac{1}{12}\)+ ... + 1 + \(\frac{1}{90}\)+ 1 + \(\frac{1}{110}\)

Mà từ \(\frac{1}{2}\)đén \(\frac{1}{110}\) có 10 số

A = 1 x 10 + \(\frac{1}{2}\)+( \(\frac{1}{2}\)\(\frac{1}{3}\)) + ( \(\frac{1}{3}\)-\(\frac{1}{4}\)) + (\(\frac{1}{4}\)-\(\frac{1}{5}\)) + ... + \(\frac{1}{11}\) 

A = 10 + \(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{11}\)\(\frac{112}{11}\)