K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2018

G= \(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+98\right)}{1.2+2.3+3.4+...+98.99}\)

G= \(\frac{\frac{1.2}{2}+\frac{2.3}{2}+\frac{3.4}{2}+...+\frac{98.99}{2}}{1.2+2.3+3.4+...+98.99}\)

G = \(\frac{\frac{1.2+2.3+...+98.99}{2}}{1.2+2.3+3.4+...+98.99}\)

G= \(\frac{1}{2}\)

22 tháng 2 2017

mh chịu thôi

24 tháng 2 2020

Câu hỏi của Nguyễn Hồ Yến Ngân - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo nhé!

21 tháng 3 2019

Câu hỏi của Nguyễn Hồ Yến Ngân - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo bài bạn làm :)

5 tháng 5 2019

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{5\cdot6}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)

\(A=1-\frac{1}{6}\)

\(A=\frac{5}{6}\)

5 tháng 5 2019

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)

\(A=1-\frac{1}{6}\)

\(A=\frac{5}{6}\)

\(B=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)

\(B=\frac{100}{2}\)

14 tháng 3 2018

Giup tui voi !!!!!!!!!!!!!!!!!!!!!!!!!!! Mai phai nop roi !!!!!!!!!!!!!!!!!!!

22 tháng 3 2020

b) Em tham khảo: Câu hỏi của lê chí dũng - Toán lớp 6 - Học toán với OnlineMath

vâng ạ nhưng e cx đg cần câu tl phần a

31 tháng 7 2015

A=1.2+2.3+...+n(n+1)

3A=1.2.3+2.3.3+....+3n(n+1)

3A=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+n(n+1)(n+2)-(n-1)n(n+1)

3A=n(n+1)(n+2)

A=n(n+1)(n+2)/3 (đpcm)

31 tháng 7 2015

A=1.2+2.3+....+n(n+1)

3A=1.2.3+2.3.3+....+3n(n+1)

3A=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+n(n+1)(n+2)-(n-1)n(n+1)

3A=n(n+1)(n+2)

A=n(n+1)(n+2)/3 (đpcm)

 

22 tháng 4 2017

\(1.\)\(M=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{42}\)

\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}\)

\(M=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{6}-\frac{1}{7}\)

\(M=1-\frac{1}{7}=\frac{6}{7}\)

Mình làm câu 1 thoi nha!

22 tháng 4 2017

1.

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)

=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)

=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}\)

=\(1-\frac{1}{7}\)

=\(\frac{6}{7}\)