\(A=\frac{1}{1004.2006}+\frac{1}{1005.2005}+\frac{1}{1006.2004}+...+\frac{1}{2006\cdot1004}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

B=\(\frac{1}{1004.2006}+\frac{1}{1005.2005}+...+\frac{1}{2006.1004}\)

                                                                     BÀI GIẢI

A=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}=\left(1+\frac{1}{2}+...+\frac{1}{2006}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1003}\right)\)

  =\(\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\)

Lại có \(\frac{1}{3010}.B=\frac{1}{1004}+\frac{1}{2006}+\frac{1}{1005}+\frac{1}{2005}+...+\frac{1}{1004}=1505.\left(\frac{1}{1004}+...+\frac{1}{2006}\right)\)

Vậy A/B=1505. Từ bài toán này, chắc cx nghĩ ra cách làm rồi nhỉ

BẤM ĐÚNG CHO TUI

8 tháng 4 2017

Mình mở rộng bài toán nhé, xong tự nghĩ cách giải . Đề mở rộng là:

Tính A/B biết \(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\)

4 tháng 4 2018

Ta có : 

\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\) ( thiếu đề nhé ) 

\(B=\left(2008-1-1-...-1\right)+\left(\frac{2007}{2}+1\right)+\left(\frac{2006}{3}+1\right)+...+\left(\frac{2}{2007}+1\right)+\left(\frac{1}{2008}+1\right)\)

\(B=\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}\)

\(B=2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)

\(\Rightarrow\)\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}}{2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)}=\frac{1}{2009}\)

Vậy \(\frac{A}{B}=\frac{1}{2009}\)

Chúc bạn học tốt ~ 

6 tháng 1 2017

A:B=1:2

6 tháng 1 2017

a:b=1:4

k nhé

28 tháng 2 2020

Bài 1:

a) Sửa lại là: \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\) nhé.

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)

\(=3^n.\left(9+1\right)-2^n.\left(4+1\right)\)

\(=3^n.\left(9+1\right)-2^{n-1}.2.\left(4+1\right)\)

\(=3^n.10-2^{n-1}.2.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n-2^{n-1}\right)\)

\(10⋮10\) nên \(10.\left(3^n-2^{n-1}\right)⋮10.\)

\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\left(đpcm\right)\left(\forall n\in N^X\right).\)

Chúc bạn học tốt!