Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ đẳng thức: a^3+b^3+c^3=3abc
suy ra a=b=c hoặc a^2+b^2+c^2+ab+ac+bc=0
thay vào bt M
tìm được M=8 hoặc M=-1
hok tốt
\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+3a^2b+3b^2a+c^3-3a^2b-3b^2a-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2=ab+bc+ca\end{cases}}\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\).Với a+b+c=0 thì \(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}\Rightarrow}M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=-1\)
Với a=b=c thì \(M=8\)
\(a^3+b^3+c^3=3abc\)
<=> \(a^3+b^3+c^3-3abc=0\)
<=> \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)
<=> \(\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
đến đây ez tự làm nốt nhé, ko ra ib mk
Câu 1:
- Chứng minh a3+b3+c3=3abc thì a+b+c=0
\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)
\(\Rightarrow\left[\left(a+b\right)^3+c^3\right]-3abc\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow0=0\) Đúng (Đpcm)
- Chứng minh a3+b3+c3=3abc thì a=b=c
Áp dụng Bđt Cô si 3 số ta có:
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Dấu = khi a=b=c (Đpcm)
Câu 2
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\cdot\frac{1}{abc}\)
Ta có:
\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}=\frac{abc}{c^3}+\frac{abc}{a^3}+\frac{abc}{b^3}\)
\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
\(=abc\cdot3\cdot\frac{1}{abc}=3\)
từ giả thiết 1 suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
lại có 1 + a2 \(\ge\)2a nên \(\frac{1}{1+a^2}\le\frac{1}{2a}\)
do đó \(\frac{3}{2}=\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\le\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{3}{2}\)
dấu bằng xảy ra khi a = b = c = 1.
vậy S = a + b + c = 3.