Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2+8x+5=\) \(\left(2x\right)^2+2.x.2.2+4+1\)
\(=\left(2x+2\right)^2+1\)
với \(x=49\)=> \(\left(49+2\right)^2+1=2602\)
\(x^3+3x^2+3x+1\) \(=\left(x+1\right)^3\)
với \(x=99\)=> \(\left(99+1\right)^3=1000000\)
mấy cau kia làm tương tự nha
Mk chỉ phân tích ra thôi,cn đâu bn tự thay số vào nha!
\(a,A=4x^2+8x+5\)
\(=4x^2+8x+4+1\)
\(=\left(2x+2\right)^2+1\)
\(b,B=x^3+3x^2+3x+1\)
\(=\left(x+1\right)^3\)
\(c,C=x^3-9x^2+27x-26\)
\(=\left(x^3-9x^2+27x-27\right)+1\)
\(=\left(x-3\right)^3+1\)
\(d,D=\left(2x-3\right)^2-\left(4x-6\right)\left(2x-5\right)+\left(2x-5\right)^2\)
\(=\left(2x-3\right)^2-2\left(2x-3\right)\left(2x-5\right)+\left(2x-5\right)^2\)
\(=\left(2x-3-2x+5\right)^2\)
\(=4\)
Vì giá trị của bt ko phụ thuộc vào biến nên bt luôn có giá trị là 4
a) \(C=x^3+3x^2+3x+10=\left(x+1\right)^3+9\)
Tại x = 99...9 (2004 chữ số 9) thì: x+1 = 100...0 (2004 chữ số 0) = 102004
Khi đó, C = (102004)3 + 9 = 106012 + 9.
b) \(B=\left(5x-11\right)^2-\left(10x-22\right)\left(5x-9\right)+\left(5x-9\right)^2=\)
\(=\left(5x-11\right)^2-2\cdot\left(5x-11\right)\left(5x-9\right)+\left(5x-9\right)^2=\left(5x-11-\left(5x-9\right)\right)^2=\left(-2\right)^2=4\)
Hay B = 4 với mọi x .
Vậy tại x = 20052006 thì B = 4.
Bài 1:
a) \(25x^2+3-10x=\left(25x^2-10x+1\right)+2=\left(5x-1\right)^2+2>0\)
=>đpcm
b) \(-9x^2-2+6x=-\left(9x^2-6x+1\right)-1=-\left(3x-1\right)^2-1< 0\)
=>đpcm
Bài 2:
\(A=4x^2+3-4x=\left(4x^2-4x+1\right)+2=\left(2x-1\right)^2+2\ge2\)
Vậy \(x=\frac{1}{2}\) thì A đạt GTNN là 2
\(B=-x^2+10x-28=-\left(x^2-10x+25\right)-3=-\left(x-5\right)^2-3\le-3\)
Vậy x=5 thì B đạt GTLN là -3
A = 25x2 + 3 - 10x
= (5x)2 - 2 . 5x . 1 + 1 + 2
= (5x - 1)2 + 2
(5x - 1)2 lớn hơn hoặc bằng 0
(5x - 1)2 + 2 lớn hơn hoặc bằng 2 > 0
Vậy A > 0 vs mọi x (đpcm)
B = - 9x2 - 2 + 6x
= - [(3x)2 - 2 . 3x . 1 + 1 + 1]
= - [(3x - 1)2 + 1]
(3x - 1)2 lớn hơn hoặc bằng 0
(3x - 1)2 + 1 lớn hơn hoặc bằng 1
- [(3x - 1)2 + 1] nhỏ hơn hoặc bằng - 1 < 0
Vậy B < 0 với mọi x (đpcm)
***
A = 4x2 - 4x + 3
= (2x)2 - 2 . 2x . 1 + 1 + 2
= (2x - 1)2 + 2
(2x - 1)2 lớn hơn hoặc bằng 0
(2x - 1)2 + 2 lớn hơn hoặc bằng 2
Min A = 2 khi x = 1/2
B = -x2 + 10x - 28
= - [x2 - 2 . x . 5 + 25 + 3]
= - [(x - 5)2 + 3]
(x - 5)2 lớn hơn hoặc bằng 0
(x - 5)2 + 3 lớn hơn hoặc bằng 3
- [(x - 5)2 + 3] nhỏ hơn hoặc bằng 3
Vậy Max B = 3 khi x = 5
1) \(A=x\left(x-6\right)+10=x^2-6x+10=x^2-6x+9+1=\left(x-3\right)^2+1\ge1>0\)
Dấu "=" xảy ra khi: \(x=3\)
\(B=x^2-2x+9y^2-6y+3\)
\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1>0\)
Dấu "=" xảy ra khi: \(x=y=1\)
2) \(A=x^2-4x+1=x^2-4x+4-3=\left(x-2\right)^2-3\ge-3\)
Dấu "=" xảy ra khi: \(x=2\)
\(B=4x^2+4x+11=4x^2+4x+1+10=\left(2x+1\right)^2+10\ge10\)
Dấu "=" xảy ra khi: \(x=-\dfrac{1}{2}\)
\(C\) mk nghĩ đề sai
\(C=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)\)
\(C=\left(x^2+4x+x+4\right)\left(x^2+3x+2x+6\right)\)
\(C=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)
\(C=\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)\)
\(C=\left(x^2+5x+5\right)^2-1\)
\(C=\left(x^2+5x+\dfrac{25}{4}-\dfrac{5}{4}\right)^2-1\)
\(C=\left[\left(x+\dfrac{5}{2}\right)^2-\dfrac{5}{4}\right]^2-1\ge\dfrac{9}{16}\)
Dấu "=" xảy ra khi: \(x=-\dfrac{5}{2}\)
\(D=4x-x^2+1=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\le5\)
Dấu "=" xảy ra khi: \(x=2\)
\(E=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+8x+16-21\right)=-\left(x+4\right)^2+21\le21\)
Dấu "=" xảy ra khi: \(x=-4\)
Câu 1:
\(A=x^2+10x+27=\left(x^2+10x+25\right)+2\)
\(=\left(x+5\right)^2+2\ge2\forall x\)
vậy : Min A = 2 khi x + 5 =0 => x =-5
\(B=x^2+x+7=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{27}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}\forall x\)
Vậy Min B = \(\dfrac{27}{4}\) khi \(x+\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
\(C=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)
Vậy Min C = \(\dfrac{11}{4}\) khi \(x-\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)
Câu 2:
\(A=-x^2+2x+2=-\left(x^2-2x+1\right)+3\)
\(=-\left(x-1\right)^2+3\le3\forall x\)
Vậy Max A = 3 khi x-1=0=> x =1
\(B=-x^2+8x+17=-\left(x^2-8x+16\right)+33\)\(=-\left(x-4\right)^2+33\le33\forall x\)
Vậy Max B = 33 khi x - 4 =0 => x = 4
a) A=x3 - 30x2 - 31x +1
thay x=31 vào biểu thức A ta được :
A= 313 -30.312 -31.31+1= 312( 31-30-1) +1 = 0+1=1
Vậy với x=31 thì A=1
b)B=x5 - 15x4 16x3 - 29x2 +13x
Thay x=14 vào biểu thức B ta được :
ớ câu này giữa 15x4 16x3 ko có giấu à . đề thiếu r .
c)C=x5 - 5x4 +5x3 - 5x3 +5x -1
Thay x=4
vào bthức C ta đc :
ko phải câu này cũng sai đề đấy chứ . sao có 5x3-5x3 vậy
Bn pải phân tích ra chứ rồi mấy thay còn để nguyên như vậy thì mk cũng bik làm,còn câu c k sai đâu, chắc zậy
Bài làm
a) x2 - 10x + 26
Thay x = 105 vào biểu thức trên, ta được:
1052 - 10 . 105 + 26
= 11025 - 1050 + 25
= 9975 + 25
= 10000
b) x2 + 0,2x + 0,01
Thay x = 0,9 vào biểu thức trên, ta được
0,92 + 0,2 . 0,9 + 0,01
= 0,81 + 0,18 + 0,01
= 1
c) 2( a - 5 )( a + 1 ) - ( a - 5 )2 + 36
= ( a - 5 )( 2a + 2 - a + 5 ) + 36
= ( a - 5 )( a + 7 ) + 36
Thay a = 99, ta được:
( 99 - 5 )( 99 + 7 ) + 36
= 94 + 106 + 36
= 236
a, Đặt A = \(x^2-10x+26\)
= \(x^2-10x+25+1\)
=\(x^2-2.x.5+5^2+1\)
=\(\left(x-5\right)^2+1\)
tại x = 105 thay vào A ta được :
A = \(\left(105-5\right)^2+1\)= 10000+1=10001
b Đặt B = \(x^2+0,2x+0,01\)
= \(x^2+2.x.0,1+0,1^2\)
= \(\left(x+0,1\right)^2\)
Tại x = 0,9 thay vào B ta được :
B = \(\left(0,9+0,1\right)^2=1^2=1\)