Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 12 + 22 + 32 +......+ 202
2S = 2(12 + 22 + 32 +......+ 202)
2S = 22 + 32 +......+ 202 + 212
2S - S = ( 22 + 32 +......+ 202 + 212) - (12 + 22 + 32 +......+ 202)
S = 212 - 12
S=1-3+32-...+398-399 (1)
=>3S=3-32+33+...+399-3100(2)
Từ 1 và 2 =>4S=1-3100
Do S chia hết cho -20 =>4S chia hết cho -20=>4S chia hết cho 4=>1-3100 chia hết cho 4
=>3100 chia 4 dư 1
tick đúng mình nha rùi mình giải tiếp dài quá
Cho S = 1-3 + 32 -33 +…….+ 398 – 399
Tính S
Bạn nào giải đầy đủ, nhanh thi mình sẽ tick cho 3 cái luôn
S = 1-3 + 32 -33 +…….+ 398 – 399
=>3S=3-32+33-34+...+399-3100
=>3S+S=(1-3+32-33+...+398-399)+(3-32+33-34+....+399-3100)
=>4S=1-3100
=>S=1-3100/4
a) S = ( 1 - 3 + 32 - 33 ) + ( 34 - 35 + 36 - 37 ) + ... + ( 396 - 397 + 398 - 399 )
S = ( 1 - 3 + 32 - 33 ) + 34 ( 1 - 3 + 32 - 33 ) + ... + 396 ( 1 - 3 + 32 - 33 )
S = ( 1 - 3 + 32 - 33 ) ( 1 + 34 + ... + 396 )
S = ( 1 + 34 + .... + 396 ) \(⋮\)-20
Suy ra S là B(-20)
b) S = 1 - 3 + 32 - 33 + .... + 398 - 399
3S = 3 - 32 + 33 - 34 + ... + 399 - 3100
4S = 1 - 3100
\(\Rightarrow S=\frac{1-3^{100}}{4}\)
vì S là 1 số nguyên nên \(1-3^{100}⋮4\) \(\Rightarrow\)3100 chia 4 dư 1
a) \(S=1-3+3^2-3^3+...+3^{98}-3^{99}\) có 100 số hạng
\(=\left(1-3+3^2-3^3\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\) có 25 nhóm
\(=\left(-20\right)+\left(-20\right).3^4+...+\left(-20\right).3^{96}\)
\(=\left(-20\right).\left(1+3^4+...+3^{96}\right)⋮\left(-20\right)\)
=> S là B(-20)
b) Từ câu a
=> \(3^4.S=\left(-20\right).\left(3^4+3^8+...+3^{96}+3^{100}\right)\)
=> \(3^4.S-S=\left(-20\right).\left(3^4+3^8+...+3^{96}+3^{100}\right)-\left(-20\right)\left(1+3^4+...+3^{92}+3^{96}\right)\)
=> \(\left(3^4-1\right)S=\left(-20\right)\left(3^{100}-1\right)\)
=> \(80S=-20.\left(3^{100}-1\right)\)
=> \(S=-\frac{3^{100}-1}{4}\) mà S là số nguyên
=> \(3^{100}-1⋮4\)=> 3^100 : 4 dư 1
S = 1 . (1 - 1) + 2.(2 - 1) + 3.(3 - 1) + ..... + 20.(20 - 1)
S = 1.2 + 2.3 + 3.4 + .... + 19.20
3S = 1.2.3 + 2.3.(4-1) +....+ 19.20.(21 - 18)
3S = 1.2.3 + 2.3.4 - 1.2.3 + ...+ 19.20.21 - 18.19.20
3S = 19.20.21 = 7980
S = 7980 : 3= 2660
\(S=\left(1^2-1\right)+\left(2^2-2\right)+\left(3^2-3\right)+....+\left(20^2-20\right)\)
\(=0+1.2+2.3+....+19.20\)
\(3S=1.2\left(3-0\right)+2.3.\left(4-1\right)+....+19.20\left(21-18\right)\)
\(3S=1.2.3-0.1.2+2.3.4-1.2.3+....+19.20.21-18.19.20\)
\(3S=19.20.21\)
\(S=19.20.7=2660\)