Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1+2+22+...+210
=> 2A = 2+22+23+...+211
=> 2A - A = (2+22+23+...+211) - (1+2+22+...+210)
=> A = 211 - 1
B = 1+3+32+...+310
=> 3B = 3+32+33+...+311
=> 3B - B = (3+32+33+...+311) - (1+3+32+...+310)
=> 2B = 311 - 1
=> B = \(\frac{3^{11}-1}{2}\)
A = 1 + 2 1 + 2 2 + 2 3 + ... + 2 9 + 2 10
2A = 2 + 2 2 + 2 3 + 2 4 + ... + 2 10 + 2 11
2A - A = ( 2 + 2 2 + 2 3 + 2 4 + ... + 2 10 + 2 11 )
- ( 1 + 2 1 + 2 2 + 2 3 + ... + 2 9 + 2 10 )
A = 2 11 - 1
A = 2047
B = 1 + 3 1 + 3 2 + 3 3 + ... + 3 9 + 3 10
3B = 3 1 + 3 2 + 3 3 + 3 4 + ... + 3 10 + 3 11
3B - B= ( 3 1 + 3 2 + 3 3 + 3 4 + ... + 3 10 + 3 11 )
- ( 1 + 3 1 + 3 2 + 3 3 + ... + 3 9 + 3 10 )
2B = 3 11 - 1
B = \(\frac{3^{11}-1}{2}\)
B = 88573
đề sao sao á
3=21+22+23+...+250
bn xem lại nhé
Chỗ 3=.. á,sao lại có sô 3 ở đó,nếu ko có sô 3 thì minh làm đc.
a) \(204-84:12=204-7=197\)
b) \(15.2^3+4.3^2-5.7=15.8+4.9+5.7=120+36+35=156+35=191\)
c) \(5^6:5^3+2^3.2^2=5^3+2^5=125+32=157\)
d) \(164.53+47.164=164.\left(53+47\right)=164.100=16400\)
_Chúc bạn học tốt_
`#3107.101107`
\(A = 2 + 2^2 + 2^3 + ... + 2^{2020} + 2^{2021} + 2^{2022}\)
\(= (2 + 2^2) + (2^3 + 2^4) + ... + (2^{2021} + 2^{2022})\)
\(=2(1+2) + 2^3(1 + 2) + ... + 2^{2021}(1 + 2)\)
\(=(1 + 2)(2 + 2^3 + ... + 2^{2021})\)
\(= 3(2 + 2^3 + ... + 2^{2021})\)
Vì \(3(2 + 2^3 + ... + 2^{2021})\) \(\vdots\) \(3\)
`\Rightarrow A \vdots 3`
Vậy, `A \vdots 3.`
\(1.\left(x^3-1\right)\left(x^2+1\right)=0\)
\(< =>\left\{{}\begin{matrix}x^3-1=0\\x^2+1=0\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}x^3=1\\x^2=-1\left(kxđ\right)\end{matrix}\right.\)
<=>x=1
vậy ...
\(2.\left(2x+6\right)\left(3x^2-12\right)=0\)
\(< =>\left\{{}\begin{matrix}2x+6=0\\3x^2-12=0\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}2x=-6\\3x^2=12\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}x=-3\\x^2=4\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
vậy ...
\(S=\left(-2\right)^0+\left(-2\right)^1+\left(-2\right)^2+\left(-2\right)^3...+2^{2014}+2^{2015}\)
\(2S=\left(-2\right)^1+\left(-2\right)^2+\left(-2\right)^3+\left(-2\right)^4+...+\left(-2\right)^{2015}+\left(-2\right)^{^{ }2016}\)
\(2S-S=\left[\left(-2\right)^1+\left(-2\right)^2+\left(-2\right)^3+\left(-2\right)^4+...+\left(-2\right)^{2015}+\left(-2\right)^{2016}\right]\)\(-\left[\left(-2\right)^0+\left(-2\right)^1+\left(-2\right)^2+\left(-2\right)^3+...+\left(-2\right)^{2014}+\left(-2\right)^{2015}\right]\)
\(S=\left(-2\right)^{2016}-\left(-2\right)^0=\left(-2\right)^{2016}-1\)
dung ko