Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+2+3+...+99+100\)
\(S=\left(100+1\right).\left[\left(100-1\right)+1\right]:2=5050\)
Số lượng số hạng của tổng S là :
\(\left(100-1\right):1+1=100\) ( số )
Tổng S có giá trị là :
\(\frac{\left(100+1\right)\times100}{2}=5050\)
Đáp số: \(5050\)
C =1+2-3-4+5+6-7-8+.....+97+98-99-100
= ( 1 + 2 -3 -4 ) + ( 5+6-7-8 ) + ... + ( 97 + 98 -99-100)
= 4 + ( -4 ) + ... + ( -4) ( do có 25 số)
= 4 x25 = 100
A= 1 + 2 - 3 -4 + 5 + 6 -7 -8 + ... +97 +98 -99 -100 ( có: ( 100 - 1 ) : 1 + 1 = 100 )
A= ( 1 +2 - 3 - 4 ) + ( 5 + 6 - 7 -8 ) + ... ( 97 + 98 - 99 +100 ) ( có 100 : 4 = 25 cặp )
A= - 4 + -4 + -4 + ... + -4 ( có 25 số hạng )
A= ( -4 ) . 25
A= -100
tham khảo
\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(=3^0-3^1+3^2-3^3+...+3^{98}-3^{99}\)có 100 hạng tử
\(=\left(3^0-3^1+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{100}\right)\) có 25 cặp
\(=-20+3^4.\left(-20\right)+...+3^{96}.\left(-20\right)\)
\(=-20\left(1+3^4+...+3^{96}\right)⋮-20\)