Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(2x^2+3\left(x-1\right)\left(x+1\right)-5x\left(x+1\right)\)
\(=2x^2+3\left(x^2-1\right)-5x^2-5x\)
\(=2x^2+3x^2-3-5x^2-5x\)
\(=\left(2x^2+3x^2-5x^2\right)-5x-3\)
\(=-5x-3\)
b,c mk ms học lớp 7
mình biết câu b rồi nhưng câu a thì chưa!
b) x^3(x+y)-x^2(x^2+xy)-x(x-y)
=x^4+x^3y-x^4-x^3y-x^2+xy
=-x^2+xy tại x=10,y=-5 ta có;
=-10^2+10(-5)
= 50
1/
a/ \(D=2x\left(10x^2-5x-2\right)-5x\left(4x^2-2x-1\right)\)
\(D=2x\left[10\left(x^2-\frac{1}{2}x-\frac{1}{5}\right)\right]-5x\left[4\left(x^2-\frac{1}{2}x-\frac{1}{4}\right)\right]\)
\(D=20x\left(x^2-\frac{1}{2}x-\frac{1}{5}\right)-20x\left(x^2-\frac{1}{2}x-\frac{1}{4}\right)\)
\(D=20x^3-10x^2-4x-20x^3+10x^2+5x\)
\(D=x\)
b/ Mình xin sửa lại đề:
Tính giá trị biểu thức \(E\left(x\right)=x^5-13x^4+13x^3-13x^2+13x+2012\)
Tại x = 12
\(E\left(x\right)=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x-1\right)x+2012\)
\(E\left(x\right)=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2-x+2012\)
\(E\left(x\right)=2012-x\)
\(E\left(x\right)=2000\)
2/
a/ \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
<=> \(2x^2-10x-3x-2x^2=26\)
<=> \(-13x=26\)
<=> \(x=-2\)
b/ Bạn vui lòng coi lại đề.
3a/ Ta có \(D=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
\(D=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x\)
\(D=-10\)
Vậy giá trị của D không phụ thuộc vào x (đpcm)
@Vũ Khánh Ly Tớ không nói bạn sai hay là sao nhưng tại hơi khó nhìn sợ bạn đọc không biết nên tớ đăng bài này.
Lưu ý: Cách này cũng hơi thông thường nên tớ sẽ cố gắng nghĩ. Nếu ra tớ sẽ post lên
Rút gọn biểu thức
\(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)+10\)
\(\Leftrightarrow8x+16-5x^2+10x+4\left(x^2+x-2x+2\right)+2\left(x^2+2x-2x+4\right)+10\)
\(\Leftrightarrow18x+26-5x^2+4\left(x^2-x+2\right)+2\left(x^2+4\right)\)
\(\Leftrightarrow18x-5x^2+26+4x^2-4x+8+2x^2+8\)
\(\Leftrightarrow18x-4x-5x^2+4x^2+2x^2+8+26+8\)
\(\Leftrightarrow14x+3x^2+42\)
\(\left(5x+3\right)^2-2\left(5x+3\right)\left(x+3\right)+\left(x+3\right)^2\)
Dễ thấy đây là hằng đẳng thức thứ hai với 5x + 3 là A và x + 3 là B
Do đó : \(\left(5x+3\right)^2-2\left(5x+3\right)\left(x+3\right)+\left(x+3\right)^2\)
\(=\left(5x+3-x-3\right)^2\)
\(=\left(4x\right)^2\)
\(=16x^2\)
\(\left(x-10\right)^2-2\left(x-10\right)\left(5x-3\right)+\left(5x-3\right)^2\)
\(=\left(x-10-5x+3\right)^2=\left(-4x-7\right)^2=\left(4x+7\right)^2\)
\(=16x^2+56x+49\)
Ta có: \(\left(x-10\right)^2-2\left(x-10\right)\left(5x-3\right)+\left(5x-3\right)^2\)
\(=\left(x-10-5x+3\right)^2\)
\(=\left(-4x+6\right)^2\)
\(=16x^2-48x+36\)