K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

Ta có công thức : với n thuộc N* thì ta luôn có :

\(1+\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)+1}{n\left(n+2\right)}=\frac{n^2+2n+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

Áp dụng vào bài toán ta được :

\(P=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right).....\left(1+\frac{1}{49.51}\right)+\frac{2}{51}\)

\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.......\frac{50^2}{49.51}+\frac{2}{51}\)

\(=\frac{\left(2.3.4...50\right)\left(2.3.4...50\right)}{\left(1.2.3...49\right)\left(3.4.5....51\right)}+\frac{2}{51}\)

\(=\frac{50.2}{51}+\frac{2}{51}=\frac{102}{51}=2\)

6 tháng 7 2017

= 4/1.3 x 9/2.4 x 16/3.5 x...x 10000/99.101

= 2.2/1.3 x 3.3/2.4 x 4.4/3.5 x..x 100.100/99.101

= (2.3.4. ... 100/1.2.3. .... 99) x (2.3.4. ... .100/3.4.5. ... .101)

= 100.2/101

=200/101

7 tháng 3 2018

\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{99.101}\right)\)

\(\Rightarrow A=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}.....\frac{99.101+1}{99.101}\)

\(\Rightarrow A=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}.....\frac{10000}{99.101}\)

\(\Rightarrow A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{100^2}{99.101}\)

\(\Rightarrow A=\frac{\left(2.3.4.....100\right)\left(2.3.4.....100\right)}{\left(1.2.3.....99\right)\left(3.4.5.....101\right)}\)

\(\Rightarrow A=\frac{100.2}{101}=\frac{200}{101}\)

23 tháng 4 2018

\(=\frac{4}{3}.\frac{9}{8}...\frac{4060225}{4060224}\)

\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}...\frac{2015.2015}{2014.2016}\)

\(=\frac{2.2.3.3...2015.2015}{1.3.2.4...2014.2016}\)

\(=\frac{2.3...2015}{1.2...2014}.\frac{2.3...2015}{3.4...2016}\)

\(=2015.\frac{2}{2016}\)

\(=2015.\frac{1}{1008}\)

\(=\frac{2015}{1008}\)

20 tháng 4 2018

\(C=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)..\left(1+\frac{1}{2014.2016}\right)\)

\(=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{2015.2015}{2014.2016}\)

\(=\frac{2.2.3.3.4.4...2015.2015}{1.3.2.4.3.5...2014.2016}\)

\(=\frac{\left(2.3.4..2015\right)\left(2.3.4..2015\right)}{\left(1.2.3..2014\right)\left(3.4.5..2016\right)}\)

\(=\frac{2015.2}{2016}=\frac{2015}{1008}\)

Vậy \(C=\frac{2015}{1008}\)

18 tháng 3 2019

2015/2016

Tự chứng minh: 1 + 1/n(n+2)=(n+1)2/n(n+2)

Áp dụng đẳng thức trên, ta có: 

1 + 1/1.3= 22/1.3

1 + 1/2.4= 32/2.4

...

1 + 1/2016.2018=20172/2016.2018

Đến đó tự làm nha bạn, máy mình không bấm được phân số, thông cảm.

27 tháng 3 2019

\(B=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right).....\left(1+\frac{1}{2016.2018}\right)\)

\(=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}.....\frac{2016.2018+1}{2016.2018}\)

\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{2017^2}{2016.2018}\)

\(=\frac{\left(2.3.4.....2017\right)\left(2.3.4.....2017\right)}{\left(1.2.3.....2016\right)\left(3.4.5.....2018\right)}\)

\(\Rightarrow B=\frac{2017.2}{2018.1}=\frac{4034}{2018}=\frac{2017}{1009}\)

8 tháng 1 2019

Xét số hạng một cách tổng quát:
1+1/[k.(k+2)]=[k.(k+2)+1]/[k.(k+2)]=(k^2+2k+1)/[k.(k+2)]=(k+1)^2/[k.(k+2)]
Cho k đi từ 1 đến 2018 ta sẽ có:
*1+1/1.3=2^2/1.3
*1+1/2.4=3^2/2.4
*1+1/3.5=4^2/3.5
..................
*1+1/2016.2018=2017^2/2016.2018
*1+1/2017.2019=2018^2/2017.2019
*1+1/2018.2020=2019^2/2018.2020
Ta thay vào  B = ( 1 + 1/1.3 ) . ( 1 + 1/2.4 ) + ( 1 + 1/3.5 ) + .....+ ( 1 + 1/2018.2020 )
=[2^2.3^2...2019^2]/[1.2.3^2.4^2.5^2.6^2...2018^2.2019.2020]

=[2^2.2019^2]/(2.2019.2020]
=2.2019/2020
=4038/2020

8 tháng 1 2019

B= (1*3+1/1*3)*(2*4+1/2*4)*....*(2018*2020+1/2018*2020)

B=(4/1*3)*(9/2*4)*...*(4076361/2018*2020)

B=(2*2/1*3)*(3*3/2*4)*...*(2019*2019/2018*2020)

B=(2*3*...*2019)*(2*3*...*2019)/(1*2*...*2018)*(3*4*...*2020)

B=2019/2020

nhớ cho mình 1 k và kết bạn nhé