K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2018

\(a,x^2-4x+1=0.\)

\(\text{Áp dụng biệt thức }\Delta=b^2-4ac\text{, ta có:}\)(Lớp 9 kì 2 hok)

\(\Delta=-4^2-4.1.1=16-4=12\)

\(\Rightarrow\text{pt có 2 nghiệm }\orbr{\begin{cases}x_1=\frac{4-\sqrt{12}}{2}=2-\sqrt{3}\\x_2=\frac{4+\sqrt{12}}{2}=2+\sqrt{3}\end{cases}}\)

b,bn xem lại đề nếu đúng nói mk 1 tiếng mk làm tiếp cho 

9 tháng 11 2018

Nguyễn Xuân Anh, đề đúng mà

Ukm

It's very hard

l can't do it 

Sorry!

 
27 tháng 7 2018

a) \(x^4-x^3-7x^2+x+6=0\)

\(\Leftrightarrow x^4+2x^3-3x^3-6x^2-x^2-2x+3x+6=0\)

\(\Leftrightarrow x^3\left(x+2\right)-3x^2\left(x+2\right)-x\left(x+2\right)+3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3-3x^2-x+3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-3\right)-\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-3\right)=0\). Làm nốt

b) \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\)

\(\Leftrightarrow2x^2+2xy+y^2+9-6x+\left|y+3\right|=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+x^2-6x+9+\left|y+3\right|=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-3\right)^2+\left|y+3\right|=0\)

Do \(\left(x+y\right)^2\ge0;\left(x-3\right)^2\ge0;\left|y+3\right|\ge0\forall x;y\)

\(\Rightarrow\hept{\begin{cases}x+y=0\\x-3=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\)

c) \(\left(2x^2+x\right)^2-4\left(2x^2+x\right)+3=0\)

\(\Leftrightarrow\left(2x^2+x\right)^2-2.\left(2x^2+x\right).2+4-1=0\)

\(\Leftrightarrow\left(2x^2+x-2\right)^2=1\Leftrightarrow\orbr{\begin{cases}2x^2+x-2=1\\2x^2+x-2=-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x^2+x-3=0\\2x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2+2.x.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}-\frac{3}{2}=0\\x^2+2.x.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}-\frac{1}{2}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{4}\right)^2-\frac{25}{16}=0\\\left(x+\frac{1}{4}\right)^2-\frac{9}{16}=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x+\frac{1}{4}\right)^2=\frac{25}{16}\\\left(x+\frac{1}{4}\right)^2=\frac{9}{16}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{4}=\pm\frac{5}{4}\\x+\frac{1}{4}=\pm\frac{3}{4}\end{cases}}\)

Từ đó tính đc x

d) \(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)

\(\Leftrightarrow\left(x^2+x+2x+2\right)\left(x^2+3x+4x+12\right)=24\)

\(\Leftrightarrow\left[x\left(x+1\right)+2\left(x+1\right)\right]\left[x\left(x+3\right)+4\left(x+3\right)\right]=24\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

Đặt \(x^2+5x+5=a\), khi đó pt có dạng:

\(\left(a-1\right)\left(a+1\right)-24=0\Leftrightarrow a^2-1-24=0\)

\(\Leftrightarrow a^2-25=0\Leftrightarrow\left(a-5\right)\left(a+5\right)=0\Leftrightarrow\orbr{\begin{cases}a=5\\a=-5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x^2+5x+5=5\\x^2+5x+5=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\x^2+5x+10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\x^2+2.x.\frac{5}{2}+\frac{25}{4}+\frac{15}{4}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\\left(x+\frac{5}{4}\right)^2=-\frac{15}{4}\left(vn\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

29 tháng 4 2020

x2-4x=0

<=> x(x-4)=0

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)

Vậy x=0; x=4

29 tháng 4 2020

Câu này rất dễ theo đề bài x2  là x nhân x có nghĩa x nhân chính nó vậy ta có luôn x bằng 4 vì 4 nhân 4 trừ đi 42 bằng 0

10 tháng 10 2020

Dạo này lười viết đề :(((

a, \(\Leftrightarrow4x^2+12x+9-x^2+2x-1=0\)

\(\Leftrightarrow3x^2+14x+8=0\)

\(\Leftrightarrow\left(3x^2+12x\right)+\left(2x+8\right)=0\)

\(\Leftrightarrow3x\left(x+4\right)+2\left(x+4\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x+4\right)=0\)

\(\left[{}\begin{matrix}x=-\frac{2}{3}\\x=-4\end{matrix}\right.\)

b, \(\Leftrightarrow x\left(9-x^2\right)+x^3-3x^2+3x-1=-1\)

\(\Leftrightarrow9x-x^3+x^3-3x^2+3x=0\)

\(\Leftrightarrow12x-3x^2=0\)

\(\Leftrightarrow4x-x^2=0\)

\(\Leftrightarrow x\left(4-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

8 tháng 9 2018

a ) \(\left(x-1\right)\left(x+1\right)-2x^2=0\)

\(\Leftrightarrow x^2-1-2x^2=0\)

\(\Leftrightarrow-x^2-1=0\)

\(\Leftrightarrow-x^2=1\)

\(\Leftrightarrow x^2=-1\) ( Vô lý , \(x^2\ge0\forall x\) )

Vậy ko có g/t x thỏa mãn

b ) \(\left(2x+5\right)\left(x^2-3x+1\right)-x\left(2x^2-1\right)=3\)

\(\Leftrightarrow2x\left(x^2-3x+1\right)+5\left(x^2-3x+1\right)-2x^3+x=3\)

\(\Leftrightarrow2x^3-6x^2+2x+5x^2-15x+5-2x^3+x=3\)

\(\Leftrightarrow\left(2x^3-2x^3\right)-\left(6x^2-5x^2\right)+\left(2x-15x+x\right)+5=3\)

\(\Leftrightarrow-x^2-12x+5=3\)

\(\Leftrightarrow-\left(x^2+12x-5\right)=3\)

\(\Leftrightarrow x^2+12x-5=-3\)

\(\Leftrightarrow x^2+12x+36-41=-3\)

\(\Leftrightarrow\left(x+6\right)^2=-3+41\)

\(\Leftrightarrow\left(x+6\right)^2=38\)

\(\Leftrightarrow\left[{}\begin{matrix}x+6=\sqrt{38}\\x+6=-\sqrt{38}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{38}+6\\x=6-\sqrt{38}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=\sqrt{38}+6\\x=6-\sqrt{38}\end{matrix}\right.\)

c ) \(\left(x-1\right)2x-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\2x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)

:D

30 tháng 7 2017

\(2x^2+5x-3=0\)

\(\Leftrightarrow2x^2-x+6x-3=0\)

\(\Leftrightarrow x\left(2x-1\right)+3\left(2x-1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{1}{2}\end{cases}}}\)

6 tháng 2 2018

a, <=> (x-1).(x-6) = 0

<=> x=1 hoặc x=6

b, <=> (x+1).(2x-5) = 0

<=> x=-1 hoặc x=5/2

c, <=> (2x-5).(2x-1) = 0

<=> x=5/2 hoặc x=1/2

d, <=> (x^2-x+1).(x^2+1) = 0

=> pt vô nghiệm vì x^2-x+1 và x^2+1 đều > 0

Tk mk nha

6 tháng 2 2018

a) x2 - 7x + 6 = 0

<=> x2 - 6x - x + 6 = 0

<=>( x - 6 ) ( x - 1 ) = 0

<=> x - 6 = 0 hoặc x - 1 = 0

1. x - 6 = 0

<=> x = 6

2. x - 1 = 0

<=> x = 1

Vậy ......

b) 2x2 - 3x - 5 = 0

<=> 2x2 + 2x - 5x - 5 = 0

<=> ( x + 1 ) ( 2x - 5 ) = 0

<=> x + 1 = 0 hoặc 2x - 5 = 0

1. x + 1 = 0

<=> x = -1

2. 2x - 5 = 0

<=> x = 2.5

Vậy ............

c) 4x2 - 12x + 5 = 0

<=> 4x2 - 2x - 10x + 5 = 0

<=> 2x ( 2x - 1 ) - 5( 2x - 1 ) = 0

<=> ( 2x - 1 ) ( 2x - 5 ) = 0

<=> 2x - 1 = 0 hoặc 2x - 5 = 0

1. 2x - 1 = 0

<=> x = 0.5

2. 2x - 5 = 0

<=> x = 2.5

Vậy ....................

d) x4 - x3 + 2x2 - x + 1 = 0

26 tháng 9 2018

dễ mak

26 tháng 9 2018

Bài 1 :

1) a2 - 4 + y ( a - 2 )

= ( a + 2 ) ( a - 2 ) + y ( a - 2 )

= ( a - 2 ) ( a + 2 + y )

2) ( x - 2 )2 - 9y2

= ( x - 2 - 3y ) ( x - 2 + 3y )

Bài 2 :

1) 3 ( x + 4 ) - 2x = 5

=> 3x + 12 - 2x = 5

=> x + 12 = 5

=> x = 5 - 12 = - 7

Vậy x = - 7

2) x ( x - 2 ) - x2 - 6 = 0

=> x2 - 2x - x2 - 6 = 0

=> - 2x - 6 = 0

=> 2x = - 6

=> x = \(-\frac{6}{2}=3\)

Vậy x = 3

3 ) x2 - 3x = 0

=> x ( x - 3 ) = 0

=> \(\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

Vậy \(x\in\left\{0;3\right\}\)

4) 5 - 3 ( x - 6 ) = 4

=> 5 - 3x + 18 = 4

=> 3x = 5 + 18 - 4

=> 3x = 19

=> x = \(\frac{19}{3}\)

Vậy \(x=\frac{19}{3}\)

19 tháng 9 2018

Bài 1 :

1) 4x2 - y2 = ( 2x + y ) ( 2x - y )
2) 9x2 - 4y2 = ( 3x - 2y ) ( 3x + 2y )

3) 4x2 + y2 + 4xy = ( 2x + y )2

Bài 2:

1) 2x2 + 8x = 0

=> 2x ( x + 4 ) = 0

=> \(\orbr{\begin{cases}2x=0\\x+4=0\end{cases}}\) 

=> \(\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)

2) 3 ( x - 4 ) + x2 - 4x = 0

=> 3 ( x - 4 ) + x ( x - 4 ) = 0

=> ( x - 4 ) ( 3 + x ) = 0

=> \(\orbr{\begin{cases}x-4=0\\3+x=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=4\\x=-3\end{cases}}\)

3) 3 ( x - 2 ) = x2 - 2x 

=> 3 ( x - 2 ) - x2 + 2x = 0

=> 3 ( x - 2 ) - x ( x - 2 ) = 0

=> ( x - 2 ) ( 3 - x ) = 0

=> \(\orbr{\begin{cases}x-2=0\\3-x=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

4) x ( x - 2 ) - 6 ( 2 - x ) = 0

=> x ( x - 2 ) + 6 ( x - 2 ) = 0

=> ( x - 2 ) ( x + 6 ) = 0

=> \(\orbr{\begin{cases}x-2=0\\x+6=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=2\\x=-6\end{cases}}\)

5) 2x ( x + 5 ) = x2 + 5x

=> 2x ( x + 5 ) - x2 - 5x = 0

=> 2x ( x + 5 ) - x ( x + 5 ) = 0

=> ( x + 5 ) ( 2x - x ) = 0

=> \(\orbr{\begin{cases}x+5=0\\2x-x=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=-5\\x=0\end{cases}}\)

6 ) ( x - 2 )2 - x ( x + 3 ) = 9

=> x2 - 4x + 4 - x2 - 3x = 9

=> - 7x + 4 = 9

=> - 7x = 5

=> x = \(-\frac{5}{7}\)

19 tháng 9 2018

\(1,4x^2-y^2=\left(2x\right)^2-y^2=\left(2x-y\right)\left(2x+y\right)\)

\(2,9x^2-4y^2=\left(3x\right)^2-\left(2y\right)^2=\left(3x-2y\right)\left(3x+2y\right)\)

\(3,4x^2+y^2+4xy=\left(2x\right)^2+2.2x.y+y^2=\left(2x+y\right)^2\)

\(1,2x^2+8x=0\Rightarrow2x\left(x+4\right)=0\Rightarrow\orbr{\begin{cases}2x=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)

\(2,3\left(x-4\right)+x^2-4x=0\)

\(\Rightarrow3\left(x-4\right)+x\left(x-4\right)=0\)

\(\Rightarrow\left(3+x\right)\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3+x=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}\)

\(3,3\left(x-2\right)=x^2-2x\)

\(\Rightarrow3\left(x-2\right)-x^2+2x=0\)

\(\Rightarrow3\left(x-2\right)-x\left(x-2\right)=0\)

\(\Rightarrow\left(3-x\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3-x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)

\(4,x\left(x-2\right)-6\left(2-x\right)=0\)

\(\Rightarrow x\left(x-2\right)+6\left(x-2\right)=0\)

\(\Rightarrow\left(x+6\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+6=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-6\\x=2\end{cases}}\)