Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2-4x+1=0.\)
\(\text{Áp dụng biệt thức }\Delta=b^2-4ac\text{, ta có:}\)(Lớp 9 kì 2 hok)
\(\Delta=-4^2-4.1.1=16-4=12\)
\(\Rightarrow\text{pt có 2 nghiệm }\orbr{\begin{cases}x_1=\frac{4-\sqrt{12}}{2}=2-\sqrt{3}\\x_2=\frac{4+\sqrt{12}}{2}=2+\sqrt{3}\end{cases}}\)
b,bn xem lại đề nếu đúng nói mk 1 tiếng mk làm tiếp cho
Ukm
It's very hard
l can't do it
Sorry!
a) \(x^4-x^3-7x^2+x+6=0\)
\(\Leftrightarrow x^4+2x^3-3x^3-6x^2-x^2-2x+3x+6=0\)
\(\Leftrightarrow x^3\left(x+2\right)-3x^2\left(x+2\right)-x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-3x^2-x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-3\right)-\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-3\right)=0\). Làm nốt
b) \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\)
\(\Leftrightarrow2x^2+2xy+y^2+9-6x+\left|y+3\right|=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+x^2-6x+9+\left|y+3\right|=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-3\right)^2+\left|y+3\right|=0\)
Do \(\left(x+y\right)^2\ge0;\left(x-3\right)^2\ge0;\left|y+3\right|\ge0\forall x;y\)
\(\Rightarrow\hept{\begin{cases}x+y=0\\x-3=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\)
c) \(\left(2x^2+x\right)^2-4\left(2x^2+x\right)+3=0\)
\(\Leftrightarrow\left(2x^2+x\right)^2-2.\left(2x^2+x\right).2+4-1=0\)
\(\Leftrightarrow\left(2x^2+x-2\right)^2=1\Leftrightarrow\orbr{\begin{cases}2x^2+x-2=1\\2x^2+x-2=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2+x-3=0\\2x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2+2.x.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}-\frac{3}{2}=0\\x^2+2.x.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}-\frac{1}{2}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{4}\right)^2-\frac{25}{16}=0\\\left(x+\frac{1}{4}\right)^2-\frac{9}{16}=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x+\frac{1}{4}\right)^2=\frac{25}{16}\\\left(x+\frac{1}{4}\right)^2=\frac{9}{16}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{4}=\pm\frac{5}{4}\\x+\frac{1}{4}=\pm\frac{3}{4}\end{cases}}\)
Từ đó tính đc x
d) \(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)
\(\Leftrightarrow\left(x^2+x+2x+2\right)\left(x^2+3x+4x+12\right)=24\)
\(\Leftrightarrow\left[x\left(x+1\right)+2\left(x+1\right)\right]\left[x\left(x+3\right)+4\left(x+3\right)\right]=24\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
Đặt \(x^2+5x+5=a\), khi đó pt có dạng:
\(\left(a-1\right)\left(a+1\right)-24=0\Leftrightarrow a^2-1-24=0\)
\(\Leftrightarrow a^2-25=0\Leftrightarrow\left(a-5\right)\left(a+5\right)=0\Leftrightarrow\orbr{\begin{cases}a=5\\a=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2+5x+5=5\\x^2+5x+5=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\x^2+5x+10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\x^2+2.x.\frac{5}{2}+\frac{25}{4}+\frac{15}{4}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\\left(x+\frac{5}{4}\right)^2=-\frac{15}{4}\left(vn\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
x2-4x=0
<=> x(x-4)=0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)
Vậy x=0; x=4
Câu này rất dễ theo đề bài x2 là x nhân x có nghĩa x nhân chính nó vậy ta có luôn x bằng 4 vì 4 nhân 4 trừ đi 42 bằng 0
Dạo này lười viết đề :(((
a, \(\Leftrightarrow4x^2+12x+9-x^2+2x-1=0\)
\(\Leftrightarrow3x^2+14x+8=0\)
\(\Leftrightarrow\left(3x^2+12x\right)+\left(2x+8\right)=0\)
\(\Leftrightarrow3x\left(x+4\right)+2\left(x+4\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x+4\right)=0\)
⇔ \(\left[{}\begin{matrix}x=-\frac{2}{3}\\x=-4\end{matrix}\right.\)
b, \(\Leftrightarrow x\left(9-x^2\right)+x^3-3x^2+3x-1=-1\)
\(\Leftrightarrow9x-x^3+x^3-3x^2+3x=0\)
\(\Leftrightarrow12x-3x^2=0\)
\(\Leftrightarrow4x-x^2=0\)
\(\Leftrightarrow x\left(4-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
a ) \(\left(x-1\right)\left(x+1\right)-2x^2=0\)
\(\Leftrightarrow x^2-1-2x^2=0\)
\(\Leftrightarrow-x^2-1=0\)
\(\Leftrightarrow-x^2=1\)
\(\Leftrightarrow x^2=-1\) ( Vô lý , \(x^2\ge0\forall x\) )
Vậy ko có g/t x thỏa mãn
b ) \(\left(2x+5\right)\left(x^2-3x+1\right)-x\left(2x^2-1\right)=3\)
\(\Leftrightarrow2x\left(x^2-3x+1\right)+5\left(x^2-3x+1\right)-2x^3+x=3\)
\(\Leftrightarrow2x^3-6x^2+2x+5x^2-15x+5-2x^3+x=3\)
\(\Leftrightarrow\left(2x^3-2x^3\right)-\left(6x^2-5x^2\right)+\left(2x-15x+x\right)+5=3\)
\(\Leftrightarrow-x^2-12x+5=3\)
\(\Leftrightarrow-\left(x^2+12x-5\right)=3\)
\(\Leftrightarrow x^2+12x-5=-3\)
\(\Leftrightarrow x^2+12x+36-41=-3\)
\(\Leftrightarrow\left(x+6\right)^2=-3+41\)
\(\Leftrightarrow\left(x+6\right)^2=38\)
\(\Leftrightarrow\left[{}\begin{matrix}x+6=\sqrt{38}\\x+6=-\sqrt{38}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{38}+6\\x=6-\sqrt{38}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=\sqrt{38}+6\\x=6-\sqrt{38}\end{matrix}\right.\)
c ) \(\left(x-1\right)2x-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\2x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)
:D
\(2x^2+5x-3=0\)
\(\Leftrightarrow2x^2-x+6x-3=0\)
\(\Leftrightarrow x\left(2x-1\right)+3\left(2x-1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{1}{2}\end{cases}}}\)
a, <=> (x-1).(x-6) = 0
<=> x=1 hoặc x=6
b, <=> (x+1).(2x-5) = 0
<=> x=-1 hoặc x=5/2
c, <=> (2x-5).(2x-1) = 0
<=> x=5/2 hoặc x=1/2
d, <=> (x^2-x+1).(x^2+1) = 0
=> pt vô nghiệm vì x^2-x+1 và x^2+1 đều > 0
Tk mk nha
a) x2 - 7x + 6 = 0
<=> x2 - 6x - x + 6 = 0
<=>( x - 6 ) ( x - 1 ) = 0
<=> x - 6 = 0 hoặc x - 1 = 0
1. x - 6 = 0
<=> x = 6
2. x - 1 = 0
<=> x = 1
Vậy ......
b) 2x2 - 3x - 5 = 0
<=> 2x2 + 2x - 5x - 5 = 0
<=> ( x + 1 ) ( 2x - 5 ) = 0
<=> x + 1 = 0 hoặc 2x - 5 = 0
1. x + 1 = 0
<=> x = -1
2. 2x - 5 = 0
<=> x = 2.5
Vậy ............
c) 4x2 - 12x + 5 = 0
<=> 4x2 - 2x - 10x + 5 = 0
<=> 2x ( 2x - 1 ) - 5( 2x - 1 ) = 0
<=> ( 2x - 1 ) ( 2x - 5 ) = 0
<=> 2x - 1 = 0 hoặc 2x - 5 = 0
1. 2x - 1 = 0
<=> x = 0.5
2. 2x - 5 = 0
<=> x = 2.5
Vậy ....................
d) x4 - x3 + 2x2 - x + 1 = 0
Bài 1 :
1) a2 - 4 + y ( a - 2 )
= ( a + 2 ) ( a - 2 ) + y ( a - 2 )
= ( a - 2 ) ( a + 2 + y )
2) ( x - 2 )2 - 9y2
= ( x - 2 - 3y ) ( x - 2 + 3y )
Bài 2 :
1) 3 ( x + 4 ) - 2x = 5
=> 3x + 12 - 2x = 5
=> x + 12 = 5
=> x = 5 - 12 = - 7
Vậy x = - 7
2) x ( x - 2 ) - x2 - 6 = 0
=> x2 - 2x - x2 - 6 = 0
=> - 2x - 6 = 0
=> 2x = - 6
=> x = \(-\frac{6}{2}=3\)
Vậy x = 3
3 ) x2 - 3x = 0
=> x ( x - 3 ) = 0
=> \(\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Vậy \(x\in\left\{0;3\right\}\)
4) 5 - 3 ( x - 6 ) = 4
=> 5 - 3x + 18 = 4
=> 3x = 5 + 18 - 4
=> 3x = 19
=> x = \(\frac{19}{3}\)
Vậy \(x=\frac{19}{3}\)
Bài 1 :
1) 4x2 - y2 = ( 2x + y ) ( 2x - y )
2) 9x2 - 4y2 = ( 3x - 2y ) ( 3x + 2y )
3) 4x2 + y2 + 4xy = ( 2x + y )2
Bài 2:
1) 2x2 + 8x = 0
=> 2x ( x + 4 ) = 0
=> \(\orbr{\begin{cases}2x=0\\x+4=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)
2) 3 ( x - 4 ) + x2 - 4x = 0
=> 3 ( x - 4 ) + x ( x - 4 ) = 0
=> ( x - 4 ) ( 3 + x ) = 0
=> \(\orbr{\begin{cases}x-4=0\\3+x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=4\\x=-3\end{cases}}\)
3) 3 ( x - 2 ) = x2 - 2x
=> 3 ( x - 2 ) - x2 + 2x = 0
=> 3 ( x - 2 ) - x ( x - 2 ) = 0
=> ( x - 2 ) ( 3 - x ) = 0
=> \(\orbr{\begin{cases}x-2=0\\3-x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
4) x ( x - 2 ) - 6 ( 2 - x ) = 0
=> x ( x - 2 ) + 6 ( x - 2 ) = 0
=> ( x - 2 ) ( x + 6 ) = 0
=> \(\orbr{\begin{cases}x-2=0\\x+6=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=2\\x=-6\end{cases}}\)
5) 2x ( x + 5 ) = x2 + 5x
=> 2x ( x + 5 ) - x2 - 5x = 0
=> 2x ( x + 5 ) - x ( x + 5 ) = 0
=> ( x + 5 ) ( 2x - x ) = 0
=> \(\orbr{\begin{cases}x+5=0\\2x-x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-5\\x=0\end{cases}}\)
6 ) ( x - 2 )2 - x ( x + 3 ) = 9
=> x2 - 4x + 4 - x2 - 3x = 9
=> - 7x + 4 = 9
=> - 7x = 5
=> x = \(-\frac{5}{7}\)
\(1,4x^2-y^2=\left(2x\right)^2-y^2=\left(2x-y\right)\left(2x+y\right)\)
\(2,9x^2-4y^2=\left(3x\right)^2-\left(2y\right)^2=\left(3x-2y\right)\left(3x+2y\right)\)
\(3,4x^2+y^2+4xy=\left(2x\right)^2+2.2x.y+y^2=\left(2x+y\right)^2\)
\(1,2x^2+8x=0\Rightarrow2x\left(x+4\right)=0\Rightarrow\orbr{\begin{cases}2x=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)
\(2,3\left(x-4\right)+x^2-4x=0\)
\(\Rightarrow3\left(x-4\right)+x\left(x-4\right)=0\)
\(\Rightarrow\left(3+x\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3+x=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}\)
\(3,3\left(x-2\right)=x^2-2x\)
\(\Rightarrow3\left(x-2\right)-x^2+2x=0\)
\(\Rightarrow3\left(x-2\right)-x\left(x-2\right)=0\)
\(\Rightarrow\left(3-x\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3-x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)
\(4,x\left(x-2\right)-6\left(2-x\right)=0\)
\(\Rightarrow x\left(x-2\right)+6\left(x-2\right)=0\)
\(\Rightarrow\left(x+6\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+6=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-6\\x=2\end{cases}}\)