Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Ta có: \(2\sqrt{75}-4\sqrt{27}+3\sqrt{12}\)
\(=2\sqrt{25}.\sqrt{3}-4\sqrt{9}.\sqrt{3}+3\sqrt{4}.\sqrt{3}\)
\(=10.\sqrt{3}-12.\sqrt{3}+6.\sqrt{3}\)
\(=4\sqrt{3}\approx6,9282\)
+) Ta có:\(\sqrt{x+6\sqrt{x-9}}\)
\(=\sqrt{x-9+6\sqrt{x-9}+9}\)
\(=\sqrt{\left(\sqrt{x-9}-3\right)^2}\)
\(=\left|\sqrt{x-9}-3\right|\)
\(\frac{2}{\sqrt{5}+\sqrt{3}}+\frac{1}{2-\sqrt{3}}=\frac{2\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}+\frac{2+\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)
\(=\frac{2\left(\sqrt{5}-\sqrt{3}\right)}{5-3}+\frac{2+\sqrt{3}}{4-3}=\sqrt{5}-\sqrt{3}+2+\sqrt{3}=\sqrt{5}+2\)
\(\frac{A}{\sqrt{2}}=\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)
=\(\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}\) =\(\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\) =\(\frac{6}{6}=1\)
\(\Rightarrow A=\sqrt{2}\)
Ta có:
\(\sqrt{27}-\sqrt{5\frac{1}{3}}+4,5\sqrt{2\frac{2}{3}}+2\sqrt{27}\)
\(=3\sqrt{3}-\sqrt{\frac{16}{3}}+4,5\sqrt{\frac{8}{3}}+6\sqrt{3}\)
\(=9\sqrt{3}+\frac{4\sqrt{3}}{3}+3\sqrt{6}\)
\(=\frac{9\sqrt{6}+31\sqrt{3}}{3}\)
\(\sqrt{27}-\sqrt{5\frac{1}{3}}+4,5\sqrt{2\frac{2}{3}}+2\sqrt{27}\)
\(=\sqrt{27}-\sqrt{16.\frac{1}{3}}+4,5.\sqrt{4.\frac{1}{3}}+2\sqrt{27}\)
\(=\sqrt{27}-4\sqrt{\frac{1}{3}}+9\sqrt{\frac{1}{3}}+2\sqrt{27}\)
\(=\sqrt{27}-4\sqrt{\frac{1}{3}}+\sqrt{27}+2\sqrt{27}\)
\(=4\sqrt{27}-4\sqrt{\frac{1}{3}}\)
\(=\sqrt{54}-\sqrt{\frac{2}{3}}\)
Sủa lại đề:
\(\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3-\sqrt{5}}}\)
Đặt \(\hept{\begin{cases}\sqrt{3+\sqrt{5}}=a\\\sqrt{3-\sqrt{5}}=b\end{cases}}\)
Khi đó ta có \(a^2+b^2=6\), \(ab=2\), \(a+b=\sqrt{10}\), \(a-b=\sqrt{2}\), \(a^2-b^2=2\sqrt{5}\)
\(=\frac{a^2}{\sqrt{10}+a}-\frac{b^2}{\sqrt{10}+b}\)
\(=\frac{a^2.\left(\sqrt{10}+b\right)-b^2.\left(\sqrt{10}+a\right)}{\left(\sqrt{10}+a\right).\left(\sqrt{10}+b\right)}\)
\(=\frac{\sqrt{10}a^2+a^2b-\sqrt{10}b^2-ab^2}{10+\sqrt{10}a+\sqrt{10}b+ab}\)
\(=\frac{\sqrt{10}.\left(a^2-b^2\right)+ab.\left(a-b\right)}{10+\sqrt{10}.\left(a+b\right)+ab}\)
\(=\frac{\sqrt{10}.2\sqrt{5}+\sqrt{10}.\sqrt{2}}{10+\sqrt{10}.\sqrt{10}+2}\)
\(=\frac{10\sqrt{2}+2\sqrt{2}}{10+10+2}\)
\(=\frac{12\sqrt{2}}{22}\)
\(=\frac{6\sqrt{2}}{11}\)
\(\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}
\)
\(=\frac{3+\sqrt{5}-3-\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}\)
\(=\frac{0}{\sqrt{10}+\sqrt{3+\sqrt{5}}}\)
\(=0\)
\(\frac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}=\frac{\left(9\sqrt{5}+9\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=\frac{9\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=9\)
chúc bn hc tốt