Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{20}+\frac{1}{44}+\frac{1}{77}+...+\frac{2}{x\left(x+3\right)}=\frac{101}{770}\)
\(\Rightarrow\)\(\frac{3}{2}.\left(\frac{1}{20}+\frac{1}{44}+\frac{1}{77}+...+\frac{2}{x\left(x+3\right)}\right)=\frac{101}{770}\).
\(\Rightarrow\)\(\frac{3}{40}+\frac{3}{88}+\frac{3}{154}+...+\frac{3}{x\left(x-3\right)}=\frac{303}{1540}\)
\(\Rightarrow\)\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)
\(\Rightarrow\)\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x-1}\)
\(\Rightarrow\)\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\Rightarrow\)\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)
\(\Rightarrow\)\(\frac{1}{x+3}=\frac{308}{1540}-\frac{303}{1540}\)
\(\Rightarrow\)\(\frac{1}{x+3}=\frac{5}{1540}\)
\(\Rightarrow\)\(\frac{1}{x+3}=\)\(\frac{1}{308}\)
\(\Rightarrow\)\(x+3=308\)
\(\Rightarrow\)\(x=308-3\)
\(\Rightarrow\)\(x=305\)
Đặt: \(\frac{1}{117}=a,\frac{1}{119}=b\)
Khi đó: \(A=3ab-4a.5.118b-5ab+\frac{8}{39}\)
\(=-2362ab+\frac{8}{39}\)
\(=-2362.\frac{1}{117}.\frac{1}{119}=\frac{38}{1071}\)
a) \(\frac{7}{5}.\frac{-31}{125}.\frac{1}{2}.\frac{10}{17}.\frac{-1}{2^3}=\frac{7.\left(-31\right).1.10.\left(-1\right)}{5.2.125.17.2^3}=\frac{31.7}{17.125.2^3}=\frac{217}{17000}\)
b) \(\left(\frac{17}{28}+\frac{18}{29}-\frac{19}{30}-\frac{20}{31}\right).\left(\frac{-5}{12}+\frac{1}{4}+\frac{1}{6}\right)=\left(\frac{17}{28}+\frac{18}{29}-\frac{19}{30}-\frac{20}{31}\right).0=0\)
c) \(\left(\frac{1}{2}+1\right).\left(\frac{1}{3}+1\right).\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}=\frac{3.4.5...100}{2.3.4...99}=\frac{100}{2}=50\)
d) \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{100}-1\right)=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}...\frac{-99}{100}=\frac{-\left(1.2.3..99\right)}{2.3.4...100}=-\frac{1}{100}\)
e) \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{899}{30^2}=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{29.31}{30.30}=\frac{1.3.2.4.3.5...29.31}{2.2.3.3.4.4...30.30}=\frac{\left(1.2.3..29\right).\left(3.4.5...31\right)}{\left(2.3.4...30\right).\left(2.3.4...30\right)}\)
\(=\frac{1.31}{30.2}=\frac{31}{60}\)
\(\frac{1}{5}+\frac{1}{20}+\frac{1}{44}+\frac{1}{77}+\frac{1}{119}+\frac{1}{170}+\frac{1}{230}+\frac{1}{299}\)
\(=\frac{1}{1.5}+\frac{1}{5.4}+\frac{1}{4.11}+\frac{1}{11.7}+...+\frac{1}{23.13}\)
\(=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{4}+...+\frac{1}{23}-\frac{1}{13}\)
\(=1-\frac{1}{13}\)
\(=\frac{12}{13}\)