Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1 - \(\frac{1}{2}\) ) ( 1 - \(\frac{1}{3}\) )...( 1 - \(\frac{1}{2015}\) )
= \(\frac{1}{2}\) . \(\frac{2}{3}\).....\(\frac{2014}{2015}\)
= \(\frac{1.2.....2014}{2.3.....2015}\) = \(\frac{1}{2015}\) <1
\(=\frac{2^2-1}{2^2}\cdot\frac{3^2-1}{3^2}\cdot\cdot\cdot\frac{2016^2-1}{2016^2}=\frac{1.3}{2.3}\cdot\frac{2.4}{3.3}\cdot\cdot\cdot\cdot\frac{2015.2017}{2016.2016}\)
\(=\frac{\left(1.2.3....2015\right).\left(3.4....2016.2017\right)}{\left(2.3....2016\right)\left(2.3......2015.2016\right)}=\frac{2017}{2.2016}=\frac{2017}{4032}\)
\(A=\left(1-\frac{1}{2010}\right)\left(1-\frac{2}{2010}\right)...\left(1-\frac{2010}{2010}\right)\left(1-\frac{2011}{2010}\right)\)
\(=\left(1-\frac{1}{2010}\right)\left(1-\frac{2}{2010}\right)...0\left(1-\frac{2011}{2010}\right)\)
\(=0\)
\(a)\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{5}{19}}{\left(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35}\right).\frac{-4}{3}}\)\(=\frac{\frac{-19}{60}.\frac{5}{19}}{\frac{3}{10}.\frac{-4}{3}}=\frac{5}{24}\)
Hok tốt
a) -1 - 2 + 3 + 4 - 5 - 6 + 7 + 8 - 9 - 10 + 11 + 12 - ... - 2013 - 2014 + 2015 + 2016
= ( -1 - 2 + 3 + 4 ) - ( 5 + 6 - 7 - 8 ) - ( 9 + 10 - 11 - 12 ) - .......... - ( 2013 + 2014 - 2015 - 2016 )
= 4 - ( -4 ) - ( -4 ) - ......... - ( -4 )
= 4 + 4 + 4 +....... + 4
= { [ ( 2016 - 1 ) : 1 + 1 ] : 4 } . 4
= { [ 2015 : 1 + 1 ] : 4 } . 4
= { 2016 : 4 } . 4
= 504 . 4
= 2016
b) \(\left(\frac{1}{2}-1\right):\left(\frac{1}{3}-1\right):\left(\frac{1}{4}-1\right):\left(\frac{1}{5}-1\right):.........:\left(\frac{1}{100}-1\right)\)
\(=\frac{-1}{2}:\frac{-2}{3}:\frac{-3}{4}:\frac{-4}{5}:......:\frac{-99}{100}\)
\(=\frac{-1}{2}.\frac{3}{-2}.\frac{4}{-3}.\frac{5}{-4}.......\frac{100}{-99}\)
\(=\frac{-1.3.4........100}{2.2.3.4......99}\)
\(=\frac{-1.100}{2.2}\)
\(=\frac{-100}{4}\)
\(=-25\)
a) -1-2+3+4-5-6+7+8+...+2016=-3+3-7+7-...-2016+2016=0
b) \(\left(\frac{1}{2}-1\right):...:\left(\frac{1}{100}-1\right)=\frac{-1}{2}:\frac{-2}{3}:\frac{-3}{4}:...:\frac{-99}{100}\)
\(=\)\(\frac{-1}{2}.\frac{-3}{2}.....\frac{-100}{99}=\frac{-1}{2}.\left(-50\right)=25\)
cho 3 k
\(\left(1-\frac{1}{2^2}\right)\cdot\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{10^2}\right)\)
=> \(\left(1-\frac{1}{2}\right)\left(1+\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1+\frac{1}{3}\right)\)\(...\left(1-\frac{1}{10}\right)\cdot\left(1+\frac{1}{10}\right)\)
=> \(\left(1-\frac{1}{2}\right)\cdot\frac{3}{2}\cdot\frac{2}{3}\cdot\frac{4}{3}\cdot\cdot\cdot\frac{9}{10}\cdot\frac{10}{11}\)
=> \(\frac{1}{2}\cdot\frac{3\cdot2\cdot4\cdot\cdot\cdot9\cdot10}{2\cdot3\cdot3\cdot\cdot\cdot10\cdot11}=\frac{1}{2}\cdot\frac{11}{10}=\frac{11}{20}\)
Chúc bn học tốt !
cho mk 3 k nha bn
thanks nhìu
bài này mk ko copy, ko chép mạng, tự nghĩ mất 6 phút .
có công thức rùi nha !
chúc bn học tốt
\(A=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}....\frac{100^2-1}{100^2}\)
\(A=\frac{1.3}{2^2}.\frac{2.4}{3^2}....\frac{99.101}{100^2}\)
\(A=\frac{1.3.2.4...99.100}{2.2.3.3...100.100}\)
\(A=\frac{1.2...99}{2.3....100}.\frac{3.4...101}{2.3...100}\)
\(A=\frac{1}{100}.\frac{101}{2}\)
\(A=\frac{101}{200}\)
Ta có :
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2016}\right)\)
\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2015}{2016}\)
\(A=\frac{2.3.4.....2015}{2.3.4.....2015}.\frac{1}{2016}\)
\(A=\frac{1}{2016}\)
Vậy \(A=\frac{1}{2016}\)
Chúc bạn học tốt ~
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)..\left(1-\frac{1}{2016}\right)\)
\(\Rightarrow A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2015}{2016}\)
\(\Rightarrow A=\frac{1.2.3..2015}{2.3.4..2016}\)
\(\Rightarrow A=\frac{1}{2016}\)
= 1/2 . 2/3 .... 2014/2015 . 2015/2016
= 1/2016
1/2016