K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

Ta có :

\(\frac{1}{101}>\frac{1}{200}\)

\(\frac{1}{102}>\frac{1}{200}\)

\(\frac{1}{103}>\frac{1}{200}\)

\(.........\)

\(\frac{1}{200}=\frac{1}{200}\)

Cộng vế với vế ta được :

\(\frac{1}{101}+\frac{1}{102}+.....+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+....+\frac{1}{200}\) (có 100 số hạng \(\frac{1}{200}\))\(=\frac{100}{200}=\frac{1}{2}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{200}>\frac{1}{2}\)

26 tháng 4 2017

\(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}\)

Ta thấy các phân số \(\frac{1}{101};\frac{1}{102};\frac{1}{103};...;\frac{1}{198};\frac{1}{199}\)đều lớn hơn \(\frac{1}{200}\)

\(\Rightarrow A>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+..+\frac{1}{200}+\frac{1}{200}\)(có 100 số hạng \(\frac{1}{200}\))

\(\Leftrightarrow A>\frac{100}{200}\)

\(\Leftrightarrow A>\frac{1}{2}\)

14 tháng 2 2016

j mà  nhìu zu zậy làm bao giờ mới xong

14 tháng 2 2016

Ủng hộ mk đi các bạn
 

15 tháng 2 2023

Đặt \(A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)

Ta có:

\(\dfrac{1}{101}>\dfrac{1}{200}\)

\(\dfrac{1}{102}>\dfrac{1}{200}\)

\(\dfrac{1}{103}>\dfrac{1}{200}\)

...

\(\dfrac{1}{199}>\dfrac{1}{200}\)

\(\Rightarrow A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)

\(=\dfrac{1}{200}.100\)

\(=\dfrac{1}{2}\)

Mà \(\dfrac{1}{2}< 1\)

\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}< 1\).

2 tháng 4 2017

\(A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=2.\left(\frac{1}{2}-\frac{1}{100}\right)=2.\frac{49}{100}=\frac{49}{50}\)

6 tháng 4 2017

Cảm ơn bạn nhiều nha Nguyễn Tuấn Minh

5 tháng 1 2017

theo mình nghĩ là như th61 này

\(2\cdot2^{99}-2^{99}=2^{99}\)

\(2^{99}=2\cdot2^{98}\)

\(2\cdot2^{98}-2^{98}=2^{98}\)

vậy tức là \(2^n-2^{n-1}=2^{n-1}\)

đến cuối bạn sẽ có \(2^3-2^2=4\)

4-2-1=1

18 tháng 6 2017

1/ Ta có : tất cả các p/s ở tổng A đều có tử bằng 1 . Mà MS 101 < 102 ; 103 ; ... ; < 200 .

   Nên 1/101 là p/s lớn nhất ( lớn hơn 1/102 ; 1/103 ; ... ; 1/200 )

2/ Tổng A có phân số là : ( 200 - 101 ) : 1 + 1 = 100 (phân số ) .

Nếu thay cả 100 p/s bằng p/s lớn nhất : 1/101 thì tổng A = 1/101 . 100 = 100/101 < 1 .

=> 1/101 + 1/102 + 1/103 + ... + 1/200 ( 100p/s ) < 1/101 + 1/101 + 1/101 + ... + 1/101 (100 p/s ) < 1 .

Vậy : A < 1

16 tháng 3 2022
Đúng rồi
17 tháng 4 2016

a) \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)\) - \(\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\) - \(\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)\) - 2.\(\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)\) - \(\left(1+\frac{1}{2}+...+\frac{1}{100}\right)\)

\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\) - \(1-\frac{1}{2}-...-\frac{1}{100}\)

\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

Vậy \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\) = \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

Mình chỉ làm được phần a) thôi, nhưng k cho mình nhé