K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

Câu 1: 

\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{2999}{3000}\)

\(\Leftrightarrow1-\dfrac{1}{n+1}=\dfrac{2999}{3000}\)

=>n+1=3000

hay n=2999

17 tháng 8 2020

Bài làm:

a) \(A=\left(\sqrt{3}+1\right)^2+\frac{5}{4}\sqrt{48}-\frac{2}{\sqrt{3+1}}\)

\(A=3+2\sqrt{3}+1+\sqrt{\frac{25.48}{16}}-\frac{2}{\sqrt{4}}\)

\(A=4+2\sqrt{3}+\sqrt{25.3}-\frac{2}{2}\)

\(A=4+2\sqrt{3}+5\sqrt{3}-1\)

\(A=3+7\sqrt{3}\)

b) \(\frac{4}{3-\sqrt{5}}-\frac{3}{\sqrt{5}+\sqrt{2}}-\frac{1}{\sqrt{2}-1}\)

\(=\frac{4\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}-\frac{3\left(\sqrt{5}-\sqrt{2}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)}-\frac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)

\(A=\frac{4\left(3+\sqrt{5}\right)}{9-5}-\frac{3\left(\sqrt{5}-\sqrt{2}\right)}{5-2}-\frac{\sqrt{2}+1}{2-1}\)

\(A=3+\sqrt{5}-\sqrt{5}+\sqrt{2}-\sqrt{2}-1\)

\(A=2\)

17 tháng 8 2020

Phần b mình viết nhầm tên thành A, bn sửa thành B nhé

c) \(C=\sqrt{4-2\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)

\(C=\sqrt{3-2\sqrt{3}+1}-\sqrt{4+4\sqrt{3}+3}\)

\(C=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(C=\sqrt{3}-1-2-\sqrt{3}\)

\(C=-3\)

17 tháng 11 2019

Thế muốn giải thích thì liệt kê đau đầu =(

\(\frac{3}{\sqrt{7}-5}-\frac{3}{\sqrt{7+5}}=\frac{-10}{9}\inℚ\)

\(\frac{\sqrt{7}+5}{\sqrt{7}-5}+\frac{\sqrt{7}-5}{\sqrt{7}+5}=12\inℚ\)

Đây là TH là số hữu tỉ còn lại.....

\(\frac{4}{2-\sqrt{3}}-\frac{4}{2+\sqrt{3}}=8\sqrt{3}\notinℚ\)

\(\frac{\sqrt{3}}{\sqrt{7}-2}-2\sqrt{7}=2-\sqrt{7}\notinℚ\)

5 tháng 7 2017

a) \(\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)

\(=\sqrt{4-4\sqrt{3}+3}-\sqrt{4+4\sqrt{3}+3}\)

\(=\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=\left|2-\sqrt{3}\right|-\left|2+\sqrt{3}\right|\)

\(=2-\sqrt{3}-2-\sqrt{3}\)

\(=-2\sqrt{3}\)

3 tháng 8 2017

Ta có :

\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)

Ta có:

\(\frac{1}{\sqrt{x}+\sqrt{x-1}}=\frac{\sqrt{x}-\sqrt{x-1}}{\left(\sqrt{x}+\sqrt{x-1}\right)\left(\sqrt{x}-\sqrt{x-1}\right)}=\sqrt{x}-\sqrt{x-1}\)

Do đó:

\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)

\(\Leftrightarrow A=\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3}+\sqrt{3}-\sqrt{4}+...+\sqrt{n-1}+\sqrt{n}\)

\(\Leftrightarrow A=\sqrt{n}-1\left(dpcm\right)\)

15 tháng 11 2019

\(\frac{4}{\sqrt{7}-\sqrt{3}}+\frac{6}{3+\sqrt{3}}+\frac{\sqrt{7}-7}{\sqrt{7}-1}\)

\(=\frac{4\left(\sqrt{7}+\sqrt{3}\right)}{\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}+\frac{6\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}+\frac{\sqrt{7}\left(1-\sqrt{7}\right)}{\sqrt{7}-1}\)

\(=\frac{4\left(\sqrt{7}+\sqrt{3}\right)}{7-3}+\frac{6\left(3-\sqrt{3}\right)}{9-3}-\sqrt{7}\)

\(=\sqrt{7}+\sqrt{3}+3-\sqrt{3}-\sqrt{7}\)

\(=3\)

18 tháng 11 2019

uyen