Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
minh chi lam dc cau a thoi nha nhung hay t i c k cho minh
3 + 32 = 12 chia het cho 4 3 + 32 + 33 + .......+39 + 310 = 30 .[ 3+32 ] + 32 . [ 3 + 32 ] + ....+38 . [ 3 + 32 ]
=30 . 12 + 32 . 12 +.....+ 38 . 12 = 12.[30 + 32 +....+ 38 ]
vi 12 chia het cho 4 nen 12 nhan voi so tu nhien nao thi so do cung chia het cho 4 nen A chia het cho 4
Đặt A = 1/3 + 2/3² + 3/3³ + 4/3^4 + ... + 100/3^100
=> 3A= 1 + 2/3 + 3/3² + 4/3³ + .... + 100/3^99
=> 3A-A = 1 + (2/3 - 1/3) + (3/3² - 2/3²) +...+ (100/3^99 - 99/3^99) - 100/3^100
=> 2A= 1+ 1/3 + 1/3² + 1/3³ +...+ 1/3^99 - 100/3^100
Đặt B = 1/3 + 1/3² + 1/3³ +...+ 1/3^99
=> 3B = 1 + 1/3 + 1/3² + 1/3³ +...+ 1/3^98
=> 2B = 1 - 1/3^99 => B = (1 - 1/3^99)/2
Thay vào 2A => 2A= 1+ 1/2 - 1/(2x3^99) - 100/3^100 < 1+ 1/2 = 3/2
=> A < 3/4
Vậy..........................
Ta có : A = 1 + 2 + 3 + ... + 2008
\(A=\frac{\left(2008+1\right)\left[\left(2008-1\right)\div1+1\right]}{2}\)
\(A=\frac{2009.2008}{2}\)
\(A=2017036\)
Ta có: B = 1 + 2 + 3 + ... + 1010
\(B=\frac{\left(1010+1\right)\left[\left(1010-1\right):1+1\right]}{2}\)
\(B=\frac{1011.1010}{2}\)
\(B=510555\)
\(A=1+2+3+4+5+...+2008\)
\(A=\left(2008+1\right)\left(\left(2008-1\right):1+1\right):2=2009.2008:2\)
\(=2009.1004=2017036\)
\(B=1+2+3+4+...+1010\)
\(B=\left(1010+1\right)\left(\left(1010-1\right):1+1\right):2=1011.\left(1010:2\right)\)
\(=1011.505=510555\)
\(C=2+5+8+11+...+302\)
\(C=\left(302+2\right)\left(\left(302-2\right):3+1\right):2=304.101:2\)
\(=15352\)
\(D=3+3^2+3^3+3^4+...+3^{2019}\)
\(3D=3^2+3^3+3^4+...+3^{2020}\)
\(3D-D=\left(3^2+3^3+3^4+...+3^{2020}\right)-\left(3+3^2+3^3+3^4+...+3^{2019}\right)\)
\(2D=3^{2020}-3\)
\(\Rightarrow D=\frac{3^{2020}-3}{2}\)
\(E=4^{10}+4^{11}+4^{12}+...+4^{100}\)
\(4E=4^{11}+4^{12}+4^{13}+...+4^{101}\)
\(4E-E=\left(4^{11}+4^{12}+4^{13}+...+4^{101}\right)-\left(4^{10}+4^{11}+4^{12}+...+4^{100}\right)\)
\(3E=4^{101}-4^{10}\)
\(E=\frac{4^{101}-4^{10}}{3}\)
a) Đặt \(A=1+2+2^2+2^3+...+2^{100}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{101}\)
\(\Rightarrow2A-A=A=\left(2+2^2+2^3+2^4+...+2^{101}\right)-\left(1+2+2^2+2^3+...+2^{100}\right)\)
\(\Rightarrow A=2^{101}-1\)
Vậy \(A=2^{101}-1\)
b) Đặt \(B=1+3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3B=3+3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3B-B=2B=\left(3+3^2+3^3+3^4+...+3^{101}\right)-\left(1+3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow2B=3^{101}-1\)
\(\Rightarrow B=\frac{3^{101}-1}{2}\)
Vậy \(B=\frac{3^{101}-1}{2}\)
_Chúc bạn học tốt_
Cảm ơn bạn nhé Nguyễn Thanh Hiền