Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2-3ab+2b^2=0\)
\(\Leftrightarrow a^2-2ab-ab+2b^2=0\)
\(\Leftrightarrow a\left(a-2b\right)-b\left(a-2b\right)=0\)
\(\Leftrightarrow\left(a-2b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=2b\\a=b\end{cases}}\)
+ ) TH1 :
\(a=2b\)
\(P=\frac{a+2b}{3a}+\frac{b+2a}{3b}\)
\(P=\frac{2b+2b}{6b}+\frac{b+4b}{3b}\)
\(P=\frac{4b}{6b}+\frac{5b}{3b}\)
\(P=\frac{4}{6}+\frac{5}{3}=\frac{7}{3}\)
+ ) TH 2 \(a=b\)
\(P=\frac{a+2b}{3a}+\frac{b+2a}{3b}\)
\(P=\frac{3a}{3a}+\frac{3b}{3b}=1+1=2\)
Chúc bạn học tốt !!!
\(2a^2+b^2=3ab\Leftrightarrow2a^2-3ab+b^2=0\Leftrightarrow\left(2a-b\right)\left(a-b\right)=0\)
\(\Leftrightarrow a-b=0\left(2a-b>0\right)\Leftrightarrow a=b\)
\(P=\frac{3a^2+2a^2}{5a^2-3a^2}=\frac{5a^2}{2a^2}=\frac{5}{2}\)
a/ \(\Leftrightarrow x\left(8x^3+12x^2+6x+1\right)=0\Leftrightarrow x\left[\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1+1\right]=0\)
\(\Leftrightarrow x\left(2x+1\right)^3=0\Rightarrow\orbr{\begin{cases}x=0\\\left(2x+1\right)^3=0\Leftrightarrow2x+1=0\Leftrightarrow x=-\frac{1}{2}\end{cases}}\)
b/ \(\Leftrightarrow4x^2-\left(4x^2-9\right)=9x\Leftrightarrow9x=9\Leftrightarrow x=1\)
c/ Từ \(\frac{1}{a}-\frac{1}{b}=1\Rightarrow a-b=-ab\) thay vào biểu thức
\(\Rightarrow\frac{-ab-2ab}{-2ab+3ab}=\frac{-3ab}{ab}=-3\)
Ap dung bdt \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right).\left(x,y>0\right)\) lien tiep la duoc
Chuc bn thanh cong
svác-xơ ngược dấu.
\(\frac{16}{2a+3b+3c}=\frac{16}{\left(a+b\right)+\left(c+b\right)+\left(b+c\right)+\left(a+c\right)}\le\frac{1}{a+b}+\frac{2}{c+b}+\frac{1}{c+a}\)
Tương tự
\(\frac{16}{2b+3c+3a}\le\frac{1}{a+b}+\frac{1}{b+c}+\frac{2}{c+a}\)
\(\frac{16}{2c+3a+3b}\le\frac{2}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\)
Cộng lại ta được:
\(16VT\le4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(\Rightarrow VT\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\left(đpcm\right)\)
Từ \(a-2b=5\Rightarrow a=5+2b\) thay vào P ta có:
\(P=\frac{3\left(2b+5\right)-2b}{2\left(2b+5\right)+5}+\frac{3b-\left(2b+5\right)}{b-5}\)\(=\frac{6b+15-2b}{4b+10+5}+\frac{3b-2b+5}{b-5}\)
\(=\frac{4b+15}{4b+15}+\frac{b-5}{b-5}=1+1=2\)
\(a^2-3ab+2b^2=0\)
\(\Leftrightarrow a^2-2ab-ab+2b^2=0\)
\(\Leftrightarrow a\left(a-2b\right)-b\left(a-2b\right)=0\)
\(\Leftrightarrow\left(a-2b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\a=b\end{matrix}\right.\)
+) TH1: \(a=2b\)
\(P=\frac{a+2b}{3a}+\frac{b+2a}{3b}\)
\(P=\frac{2b+2b}{6b}+\frac{b+4b}{3b}\)
\(P=\frac{4b}{6b}+\frac{5b}{3b}\)
\(P=\frac{4}{6}+\frac{5}{3}=\frac{7}{3}\)
+) TH2: \(a=b\)
\(P=\frac{a+2b}{3a}+\frac{b+2a}{3b}\)
\(P=\frac{3a}{3a}+\frac{3b}{3b}=1+1=2\)
Vậy....