K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

\(\dfrac{4}{15}+\dfrac{4}{35}+...+\dfrac{4}{399}=4.\left(\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{399}\right)=4.\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{19.21}\right)=4.\left[\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\right]=4.\left[\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{21}\right)\right]=2.\left(\dfrac{7-1}{21}\right)=\dfrac{12}{21}=\dfrac{4}{7}\)

22 tháng 1 2019

@Luân Đào

a: \(=10\sqrt{2}-4\sqrt{2}+6\sqrt{2}=12\sqrt{2}\)

b: \(=5\sqrt{7}-4\sqrt{7}+3\sqrt{7}=4\sqrt{7}\)

c: \(=\dfrac{3}{2}\sqrt{6}+\dfrac{2}{3}\sqrt{6}-2\sqrt{6}=\dfrac{1}{6}\sqrt{6}\)

d: \(=8\sqrt{5}-15\sqrt{5}+15\sqrt{5}-3\sqrt{5}=5\sqrt{5}\)

e: \(=\sqrt{5}+\dfrac{2}{5}\sqrt{5}+\sqrt{5}=2.4\sqrt{5}\)

f: \(=\dfrac{1}{5}\sqrt{5}+\dfrac{3}{2}\sqrt{2}+\dfrac{5}{2}\sqrt{2}=\dfrac{1}{5}\sqrt{5}+4\sqrt{2}\)

NV
11 tháng 1 2019

1/ \(\dfrac{5}{3}\le x\le\dfrac{7}{3}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{3x-5}=a>0\\\sqrt{7-3x}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2+b^2=2\\17-6x=2b^2+3\\6x-7=2a^2+3\end{matrix}\right.\)

Mặt khác theo BĐT Bunhiacốpxki:

\(a+b=\sqrt{3x-5}+\sqrt{7-3x}\le\sqrt{\left(1+1\right)\left(3x-5+7-3x\right)}=2\)

\(\Rightarrow0< a+b\le2\)

Ta được hệ pt:

\(\left\{{}\begin{matrix}a^2+b^2=2\\\left(2b^2+3\right).a+\left(2a^2+3\right)b=2+8ab\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^2-2ab=2\\2ab^2+3a+2a^2b+3b-8ab-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2ab=\left(a+b\right)^2-2\\2ab\left(a+b\right)+3\left(a+b\right)-8ab-2=0\end{matrix}\right.\)

\(\Rightarrow\left(\left(a+b\right)^2-2\right)\left(a+b\right)+3\left(a+b\right)-4\left(a+b\right)^2+6=0\)

\(\Leftrightarrow\left(a+b\right)^3-4\left(a+b\right)^2+\left(a+b\right)+6=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b=-1< 0\left(l\right)\\a+b=2\\a+b=3>2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow a+b=2\) , dấu "=" xảy ra khi và chỉ khi:

\(3x-5=7-3x\Rightarrow x=2\)

Vậy pt có nghiệm duy nhất \(x=2\)

NV
11 tháng 1 2019

2/ ĐKXĐ: \(x\ne\pm2\)

\(\left(\dfrac{x-1}{x+2}\right)^2+4\left(\dfrac{x+1}{x-2}\right)^2-\left(\dfrac{15}{x^2-4}+5\right)=0\)

\(\Leftrightarrow\left(\dfrac{x-1}{x+2}\right)^2+4\left(\dfrac{x+1}{x-2}\right)^2-5.\left(\dfrac{x^2-1}{x^2-4}\right)=0\)

\(\Leftrightarrow\left(\dfrac{x-1}{x+2}\right)^2-\left(\dfrac{x^2-1}{x^2-4}\right)-4\left[\left(\dfrac{x^2-1}{x^2-4}\right)-\left(\dfrac{x+1}{x-2}\right)^2\right]=0\)

\(\Leftrightarrow\left(\dfrac{x-1}{x+2}\right)\left(\dfrac{x-1}{x+2}-\dfrac{x+1}{x-2}\right)-4\left(\dfrac{x+1}{x-2}\right)\left(\dfrac{x-1}{x+2}-\dfrac{x+1}{x-2}\right)=0\)

\(\Leftrightarrow\left(\dfrac{x-1}{x+2}-\dfrac{4\left(x+1\right)}{x-2}\right)\left(\dfrac{x-1}{x+2}-\dfrac{x+1}{x-2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x-1}{x+2}=\dfrac{4\left(x+1\right)}{x-2}\\\dfrac{x-1}{x+2}=\dfrac{x+1}{x-2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=4\left(x^2+3x+2\right)\\x^2-3x+2=x^2+3x+2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x^2+15x+6=0\\6x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-5+\sqrt{17}}{2}\\x=\dfrac{-5-\sqrt{17}}{2}\end{matrix}\right.\)

Bài 1: 

a: \(\Leftrightarrow\left|x+\dfrac{4}{15}\right|=-2.15+3.75=\dfrac{8}{5}\)

=>x+4/15=8/5 hoặc x+4/15=-8/5

=>x=4/3 hoặc x=-28/15

b: \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{5}{3}x=-\dfrac{1}{6}\\\dfrac{5}{3}x=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{6}:\dfrac{5}{3}=\dfrac{-3}{30}=\dfrac{-1}{10}\\x=\dfrac{1}{10}\end{matrix}\right.\)

c: \(\Leftrightarrow\left|x-1\right|-1=1\)

=>|x-1|=2

=>x-1=2 hoặc x-1=-2

=>x=3 hoặc x=-1

Bài 2: 

b: \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Leftrightarrow x=y=-\dfrac{9}{25}\)

Bài 3: 

a: \(A=\left|x+\dfrac{15}{19}\right|-1>=-1\)

Dấu '=' xảy ra khi x=-15/19

b: \(\left|x-\dfrac{4}{7}\right|+\dfrac{1}{2}>=\dfrac{1}{2}\)

Dấu '=' xảy ra khi x=4/7

 

21 tháng 6 2017

a, Dễ thấy C>0.

Ta có: \(C^2=\left(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\right)^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}=8+2\sqrt{16-10-2\sqrt{5}}=8+2\sqrt{6-2\sqrt{5}}=8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\left(\sqrt{5}-1\right)=8+2\sqrt{5}-2=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\)

=>\(C=\sqrt{\left(\sqrt{5}+1\right)^2}=\left|\sqrt{5}+1\right|=\sqrt{5}+1\)(vì C>0).

a: \(=\sqrt{\dfrac{1}{10}}+\sqrt{\dfrac{1}{60}}-\dfrac{2\sqrt{15}}{15}\)

\(=\dfrac{\sqrt{10}}{10}-\dfrac{2\sqrt{15}}{15}+\dfrac{\sqrt{15}}{30}\)

\(=\dfrac{3\sqrt{10}-3\sqrt{15}}{30}=\dfrac{\sqrt{10}-\sqrt{15}}{10}\)

b: \(=\dfrac{\left(\sqrt{5}+\dfrac{1}{2}\cdot2\sqrt{5}-\dfrac{5}{4}\cdot\dfrac{2}{\sqrt{5}}+\sqrt{5}\right)}{2\sqrt{5}}\)

\(=\dfrac{\left(\sqrt{5}+\sqrt{5}-\dfrac{1}{2}\sqrt{5}+\sqrt{5}\right)}{2\sqrt{5}}\)

\(=\dfrac{5}{2}:2=\dfrac{5}{4}\)

16 tháng 6 2017

Hệ hai phương trình bậc nhất hai ẩn

Hệ hai phương trình bậc nhất hai ẩn