Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{11}{15}=\frac{44}{60}< \frac{51}{60}=\frac{17}{20}\Rightarrow\frac{11}{15}< \frac{17}{20}\)
\(\frac{5^{10}+2}{5^{11}+2}=\frac{5^{12}+50}{5^{13}+50}>\frac{5^{12}+2}{5^{13}+2}\)
Ta có \(\left\{{}\begin{matrix}1< 3\\n+1>n\end{matrix}\right.\) \(\Rightarrow\frac{1}{n+1}< \frac{3}{n}\Rightarrow1+\frac{1}{n+1}< 1+\frac{3}{n}\Rightarrow\frac{n+2}{n+1}< \frac{n+3}{n}\)
Sorry Mình sửa lại câu 2:
2. Cho Q = \(5+5^2+..+5^{2006}\)
CMR: Q ⋮ 126
Câu 1 :
S=30+...+32002
=> 3S = 31+32+...+32003
=> 3S-S=2S = (31+32+...+32003)-(30+...+32002)
=> 2S = 32003-30
2/
S = 2 + 22 + 23 +...+ 299
= (2+22+23) +...+ (297+298+299)
= 2(1+2+22)+...+297(1+2+22)
= 2.7 +...+ 297.7
= 7(2+...+297) chia hết cho 7
S = 2+22+23+...+299
= (2+22+23+24+25)+...+(295+296+297+298+299)
= 2(1+2+22+23+24)+...+295(1+2+22+23+24)
= 2.31+...+295.31
= 31(2+...+295) chia hết cho 31
3/
A = 1+5+52+....+5100 (1)
5A = 5+52+53+...+5101 (2)
Lấy (2) - (1) ta được
4A = 5101 - 1
A = \(\frac{5^{101}-1}{4}\)
4/
Đặt A là tên của biểu thức trên
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
........
\(\frac{1}{8^2}< \frac{1}{7.8}=\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}=\frac{1}{1}-\frac{1}{8}=\frac{7}{8}< 1\)
Vậy...
5/
a, Gọi UCLN(n+1,2n+3) = d
Ta có : n+1 chia hết cho d => 2(n+1) chia hết cho d => 2n+2 chia hết cho d
2n+3 chia hết cho d
=> 2n+2 - (2n+3) chia hết cho d
=> -1 chia hết cho d => d = {-1;1}
Vậy...
b, Gọi UCLN(2n+3,4n+8) = d
Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d
4n+8 chia hết cho d
=> 4n+6 - (4n+8) chia hết cho d
=> -2 chia hết cho d => d = {1;-1;2;-2}
Mà 2n+3 lẻ => d lẻ => d khác 2;-2 => d = {1;-1}
Vậy...
\(S=1+5+5^2+...+5^{200}\)
\(\Rightarrow5S=5+5^2+5^3+..+5^{201}\)
\(\Rightarrow5S-S=\left(5+5^2+5^3+...+5^{201}\right)-\left(1+5+5^2+...+5^{200}\right)\)
\(\Rightarrow4S=5^{201}-1\)
\(\Rightarrow S=\frac{5^{201}-1}{4}\)