Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{9}{1.2}+\frac{9}{2.3}+....+\frac{9}{98.99}+\frac{9}{99.100}\)
\(=9.\frac{1}{1.2}+9.\frac{1}{2.3}+....+9.\frac{1}{98.99}+9.\frac{1}{99.100}\)
\(=9.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(=9.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=9.\left(1-\frac{1}{100}\right)=9.\frac{99}{100}=\frac{891}{100}\)
\(\frac{5}{9}\cdot\frac{7}{13}+\frac{5}{9}\cdot\frac{9}{13}+\frac{3}{13}\cdot\left(-\frac{5}{9}\right)\)
\(=\frac{5}{9}\cdot\frac{7}{13}+\frac{5}{9}\cdot\frac{9}{13}-\frac{3}{13}\cdot\frac{5}{9}\)
\(=\frac{5}{9}\cdot\left(\frac{7}{13}+\frac{9}{13}-\frac{3}{13}\right)\)
\(=\frac{5}{9}\)
Ta có :
\(8^9< 9^9\)
\(7^9< 9^9\)
\(6^9< 9^9\)
\(......\)
\(1^9< 9^9\)
Cộng vế với vế ta được :
\(1^9+2^9+3^9+...+8^9< 9^9+9^9+9^9+...+9^9\) ( có tất cả 8 chữ số \(9^9\) )
\(\Rightarrow1^9+2^9+3^9+...+8^9< 8.9^9< 9.9^9=9^{10}\)
\(\Rightarrow1^9+2^9+3^9+...+8^9< 9^{10}\)
a, \(\frac{-3}{5}+\frac{7}{21}+\frac{-4}{5}+\frac{7}{5}\)
\(=\left(\frac{-3}{5}+\frac{-4}{5}+\frac{7}{5}\right)+\frac{7}{21}\)
\(=0+\frac{7}{21}\)
\(=\frac{7}{21}\)
\(=\frac{1}{3}\)
b, \(\frac{8}{9}+\frac{1}{9}.\frac{7}{9}+\frac{1}{9}.\frac{2}{9}\)
\(=\frac{8}{9}+\frac{1}{9}.\left(\frac{7}{9}+\frac{2}{9}\right)\)
\(=\frac{8}{9}+\frac{1}{9}.1\)
\(=\frac{8}{9}+\frac{1}{9}\)
\(=1\)
a) \(\frac{-3}{5}\)+\(\frac{7}{21}\)+\(\frac{-4}{5}\)+\(\frac{7}{5}\)
=(\(\frac{-3}{5}\)+\(\frac{-4}{5}\)+\(\frac{7}{5}\)) +\(\frac{7}{21}\)
= 0+
a: \(=\dfrac{-28}{36}+\dfrac{15}{36}-\dfrac{26}{36}=\dfrac{-39}{36}=\dfrac{-13}{12}\)
b: \(=\dfrac{11}{9}\left(\dfrac{15}{4}-\dfrac{7}{4}-\dfrac{5}{4}\right)=\dfrac{11}{9}\cdot\dfrac{3}{4}=\dfrac{11}{12}\)
c: \(=15+\dfrac{9}{7}+6+\dfrac{2}{3}-5-\dfrac{5}{9}\)
\(=16+\dfrac{88}{63}=\dfrac{1096}{63}\)
d: \(=\dfrac{5}{6}-\dfrac{1}{3}+\dfrac{2}{18}\)
\(=\dfrac{15-6+2}{18}=\dfrac{11}{18}\)
A = \(\dfrac{9}{1.2}\)+ \(\dfrac{9}{2.3}\)+\(\dfrac{9}{3.4}\)+......+\(\dfrac{99}{99.100}\)
A = 9( \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+.......+\(\dfrac{1}{99.100}\))
A = 9( 1-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+........+\(\dfrac{1}{99}\)-\(\dfrac{1}{100}\))
A = 9 ( 1 - \(\dfrac{1}{100}\))
A = 9 . \(\dfrac{99}{100}\)
A = \(\dfrac{891}{100}\)
\(A=\dfrac{9}{1\cdot2}+\dfrac{9}{2\cdot3}+\dfrac{9}{3\cdot4}+...+\dfrac{9}{98\cdot99}+\dfrac{9}{99\cdot100}\)
\(=9\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\right)\)
\(=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=9\left(1-\dfrac{1}{100}\right)\)
\(=9\left(\dfrac{100}{100}-\dfrac{1}{100}\right)\)
\(=9\cdot\dfrac{99}{100}\)
\(=\dfrac{891}{100}\)
a) \(A=\frac{-7}{813}+496.\left(\frac{-7}{813}\right)+\left(\frac{-7}{813}\right).316\)
\(=\frac{-7}{813}.\left(1+496+316\right)\)
\(=\frac{-7}{813}.813\)
\(=-7\)
b) \(B=\frac{-9}{10}.\frac{5}{14}+\frac{1}{10}.\left(\frac{-9}{2}\right)+\frac{1}{7}.\left(\frac{-9}{10}\right)\)
\(=\frac{-9}{10}.\left(\frac{5}{14}+\frac{1}{2}+\frac{1}{7}\right)\)
\(=\frac{-9}{10}.1\)
\(=\frac{-9}{10}\)
a)S = 1.2 + 2.3 + 3.4 +...+ 99.100
3S=(1.2+2.3+3.4+...+99.10).3
3S=1.2.3+2.3.3+3.4.3+...+99.100.3
3S=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3S=(1.2.3+2.3.4+...+99.100.101)-(0.1.2+1.2.3+...+98.99.100)
3S=99.100.101-0.1.2
3S=999900
S=999900:3
S=333300
Vậy S=333300
a)\(\dfrac{5}{23}.\dfrac{17}{26}+\dfrac{5}{23}.\dfrac{10}{26}-\dfrac{5}{23}\)
\(=\dfrac{5}{23}\left(\dfrac{17}{26}+\dfrac{10}{26}-1\right)\)
\(=\dfrac{5}{23}.\left(\dfrac{27}{26}-1\right)\)
\(=\dfrac{5}{23}.\dfrac{1}{26}\)
\(=\dfrac{5}{598}\)
b)\(\dfrac{1}{7}.\dfrac{5}{9}+\dfrac{5}{9}.\dfrac{2}{7}+\dfrac{5}{9}.\dfrac{1}{7}+\dfrac{5}{9}.\dfrac{3}{7}\)
\(=\dfrac{5}{9}.\left(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{3}{7}\right)\)
\(=\dfrac{5}{9}.1=\dfrac{5}{9}\)
a)\(\dfrac{5}{23}.\dfrac{17}{26}+\dfrac{5}{23}.\dfrac{10}{26}-\dfrac{5}{23}\)
\(=\dfrac{5}{23}.\left(\dfrac{17}{26}+\dfrac{10}{26}-1\right)\)
\(=\dfrac{5}{23}.\left(\dfrac{27}{26}-\dfrac{26}{26}\right)\)
=\(\dfrac{5}{23}.\dfrac{1}{26}\)
\(=\dfrac{5}{598}\)
b)\(\dfrac{1}{7}.\dfrac{5}{9}+\dfrac{5}{9}.\dfrac{2}{7}+\dfrac{5}{9}.\dfrac{1}{7}+\dfrac{5}{9}.\dfrac{3}{7}\)
\(=\dfrac{5}{9}.\left(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{3}{7}\right)\)
\(=\dfrac{5}{9}.\left(\dfrac{7}{7}\right)\)
=\(\dfrac{5}{9}.1\)
\(=\dfrac{5}{9}\)
(99+99+99+99+99+99+99+99+99)-910
=99.(1+1+1+1+1+1+1+1+1)-910
=99.9-910
=910-910
=0
(99+99+99+99+99+99+99+99+99)-910
= 3486784401-3486784401
= 0
k cho mk nha