\(9^9\)+\(9^9\)+\(9^9...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2017

(99+99+99+99​+99+99​+99+99​+99)-910

=99.(1+1+1+1+1+1+1+1+1)-910

=99.9-910

=910-910

=0

27 tháng 11 2017

(99+99+99+99+99+99+99+99+99)-910

            =                 3486784401-3486784401

            =                             0

k cho mk nha

29 tháng 3 2018

\(\frac{9}{1.2}+\frac{9}{2.3}+....+\frac{9}{98.99}+\frac{9}{99.100}\)

\(=9.\frac{1}{1.2}+9.\frac{1}{2.3}+....+9.\frac{1}{98.99}+9.\frac{1}{99.100}\)

\(=9.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(=9.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(=9.\left(1-\frac{1}{100}\right)=9.\frac{99}{100}=\frac{891}{100}\)

19 tháng 2 2020

\(\frac{5}{9}\cdot\frac{7}{13}+\frac{5}{9}\cdot\frac{9}{13}+\frac{3}{13}\cdot\left(-\frac{5}{9}\right)\)

\(=\frac{5}{9}\cdot\frac{7}{13}+\frac{5}{9}\cdot\frac{9}{13}-\frac{3}{13}\cdot\frac{5}{9}\)

\(=\frac{5}{9}\cdot\left(\frac{7}{13}+\frac{9}{13}-\frac{3}{13}\right)\)

\(=\frac{5}{9}\)

19 tháng 2 2020

Từ biểu thức, suy ra:

5/9[7/13+9/13+(-1)]

=5/9.3/13

=3/13

9 tháng 2 2017

Ta có :

\(8^9< 9^9\)

\(7^9< 9^9\)

\(6^9< 9^9\)

\(......\)

\(1^9< 9^9\)

Cộng vế với vế ta được :

\(1^9+2^9+3^9+...+8^9< 9^9+9^9+9^9+...+9^9\) ( có tất cả 8 chữ số \(9^9\) )

\(\Rightarrow1^9+2^9+3^9+...+8^9< 8.9^9< 9.9^9=9^{10}\)

\(\Rightarrow1^9+2^9+3^9+...+8^9< 9^{10}\)

22 tháng 6 2020

a, \(\frac{-3}{5}+\frac{7}{21}+\frac{-4}{5}+\frac{7}{5}\)

\(=\left(\frac{-3}{5}+\frac{-4}{5}+\frac{7}{5}\right)+\frac{7}{21}\)

\(=0+\frac{7}{21}\)

\(=\frac{7}{21}\)

\(=\frac{1}{3}\)

b, \(\frac{8}{9}+\frac{1}{9}.\frac{7}{9}+\frac{1}{9}.\frac{2}{9}\)

\(=\frac{8}{9}+\frac{1}{9}.\left(\frac{7}{9}+\frac{2}{9}\right)\)

\(=\frac{8}{9}+\frac{1}{9}.1\)

\(=\frac{8}{9}+\frac{1}{9}\)

\(=1\)

22 tháng 6 2020

a) \(\frac{-3}{5}\)+\(\frac{7}{21}\)+\(\frac{-4}{5}\)+\(\frac{7}{5}\)

=(\(\frac{-3}{5}\)+\(\frac{-4}{5}\)+\(\frac{7}{5}\)) +\(\frac{7}{21}\)

= 0+

a: \(=\dfrac{-28}{36}+\dfrac{15}{36}-\dfrac{26}{36}=\dfrac{-39}{36}=\dfrac{-13}{12}\)

b: \(=\dfrac{11}{9}\left(\dfrac{15}{4}-\dfrac{7}{4}-\dfrac{5}{4}\right)=\dfrac{11}{9}\cdot\dfrac{3}{4}=\dfrac{11}{12}\)

c: \(=15+\dfrac{9}{7}+6+\dfrac{2}{3}-5-\dfrac{5}{9}\)

\(=16+\dfrac{88}{63}=\dfrac{1096}{63}\)

d: \(=\dfrac{5}{6}-\dfrac{1}{3}+\dfrac{2}{18}\)

\(=\dfrac{15-6+2}{18}=\dfrac{11}{18}\)

17 tháng 4 2017

A = \(\dfrac{9}{1.2}\)+ \(\dfrac{9}{2.3}\)+\(\dfrac{9}{3.4}\)+......+\(\dfrac{99}{99.100}\)

A = 9( \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+.......+\(\dfrac{1}{99.100}\))

A = 9( 1-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+........+\(\dfrac{1}{99}\)-\(\dfrac{1}{100}\))

A = 9 ( 1 - \(\dfrac{1}{100}\))

A = 9 . \(\dfrac{99}{100}\)

A = \(\dfrac{891}{100}\)

18 tháng 4 2017

\(A=\dfrac{9}{1\cdot2}+\dfrac{9}{2\cdot3}+\dfrac{9}{3\cdot4}+...+\dfrac{9}{98\cdot99}+\dfrac{9}{99\cdot100}\)

\(=9\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\right)\)

\(=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=9\left(1-\dfrac{1}{100}\right)\)

\(=9\left(\dfrac{100}{100}-\dfrac{1}{100}\right)\)

\(=9\cdot\dfrac{99}{100}\)

\(=\dfrac{891}{100}\)

29 tháng 7 2019

a) \(A=\frac{-7}{813}+496.\left(\frac{-7}{813}\right)+\left(\frac{-7}{813}\right).316\)

\(=\frac{-7}{813}.\left(1+496+316\right)\)

\(=\frac{-7}{813}.813\)

\(=-7\)

b) \(B=\frac{-9}{10}.\frac{5}{14}+\frac{1}{10}.\left(\frac{-9}{2}\right)+\frac{1}{7}.\left(\frac{-9}{10}\right)\)

\(=\frac{-9}{10}.\left(\frac{5}{14}+\frac{1}{2}+\frac{1}{7}\right)\)

\(=\frac{-9}{10}.1\)

\(=\frac{-9}{10}\)

23 tháng 10 2017

a)S = 1.2 + 2.3 + 3.4 +...+ 99.100

3S=(1.2+2.3+3.4+...+99.10).3

3S=1.2.3+2.3.3+3.4.3+...+99.100.3

3S=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)

3S=(1.2.3+2.3.4+...+99.100.101)-(0.1.2+1.2.3+...+98.99.100)

3S=99.100.101-0.1.2

3S=999900

S=999900:3

S=333300

Vậy S=333300

20 tháng 3 2017

a)\(\dfrac{5}{23}.\dfrac{17}{26}+\dfrac{5}{23}.\dfrac{10}{26}-\dfrac{5}{23}\)

\(=\dfrac{5}{23}\left(\dfrac{17}{26}+\dfrac{10}{26}-1\right)\)

\(=\dfrac{5}{23}.\left(\dfrac{27}{26}-1\right)\)

\(=\dfrac{5}{23}.\dfrac{1}{26}\)

\(=\dfrac{5}{598}\)

b)\(\dfrac{1}{7}.\dfrac{5}{9}+\dfrac{5}{9}.\dfrac{2}{7}+\dfrac{5}{9}.\dfrac{1}{7}+\dfrac{5}{9}.\dfrac{3}{7}\)

\(=\dfrac{5}{9}.\left(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{3}{7}\right)\)

\(=\dfrac{5}{9}.1=\dfrac{5}{9}\)

20 tháng 3 2017

a)\(\dfrac{5}{23}.\dfrac{17}{26}+\dfrac{5}{23}.\dfrac{10}{26}-\dfrac{5}{23}\)

\(=\dfrac{5}{23}.\left(\dfrac{17}{26}+\dfrac{10}{26}-1\right)\)

\(=\dfrac{5}{23}.\left(\dfrac{27}{26}-\dfrac{26}{26}\right)\)

=\(\dfrac{5}{23}.\dfrac{1}{26}\)

\(=\dfrac{5}{598}\)

b)\(\dfrac{1}{7}.\dfrac{5}{9}+\dfrac{5}{9}.\dfrac{2}{7}+\dfrac{5}{9}.\dfrac{1}{7}+\dfrac{5}{9}.\dfrac{3}{7}\)

\(=\dfrac{5}{9}.\left(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{3}{7}\right)\)

\(=\dfrac{5}{9}.\left(\dfrac{7}{7}\right)\)

=\(\dfrac{5}{9}.1\)

\(=\dfrac{5}{9}\)