Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta quy đồng tử để có cùng tử là 3 :
\(\frac{1}{7}=\frac{3}{21}\)
\(\frac{1}{8}=\frac{3}{24}\)
=>\(\frac{3}{21}< x< \frac{3}{24}\)
Nên \(x=\frac{3}{22};\frac{3}{23}\)
Vậy tổng các phân số lớn hơn \(\frac{1}{7}\)và nhỏ hơn \(\frac{1}{8}\)là \(\frac{135}{506}\)
k mình nha các bạn và mình chúc các bạn học giỏi nha
\(A=\frac{1}{1.4.7}+\frac{1}{4.7.10}+...+\frac{1}{54.57.60}\)
\(\Rightarrow6A=\frac{6}{1.4.7}+\frac{6}{4.7.10}+...+\frac{6}{54.57.60}\)
\(=\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+...+\frac{1}{54.47}-\frac{1}{57.60}\)
\(=\frac{1}{4}-\frac{1}{3420}=\frac{855}{3420}-\frac{1}{3420}=\frac{427}{1710}\)
\(\Rightarrow A=\frac{427}{1710}:6=\frac{427}{1710}.\frac{1}{6}=\frac{427}{10260}\)
Nhận thấy:
\(\frac{6}{1.4.7}=\frac{1}{1.4}-\frac{1}{4.7}\)
...............
\(\frac{6}{54.57.60}=\frac{1}{54.57}-\frac{1}{57.60}\)
=> ta phải nhân A vói 6
=> 6A =
\(\frac{6}{1.4.7}+\frac{6}{4.7.10}+...+\frac{6}{54.57.60}=\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+...+\frac{1}{54.57}-\frac{1}{57.60}=\frac{1}{4}-\frac{1}{57.60}=\frac{427}{1710}\)
=> A = 427/1710 : 6 =427/10260
Ta có \(A=\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+\frac{1}{7.10}-...+\frac{1}{16.19}-\frac{1}{19.22}\)
\(=\frac{1}{4}-\frac{1}{418}=\frac{207}{836}\)
\(A=\frac{6}{1\cdot4\cdot7}+\frac{6}{4\cdot7\cdot10}+\frac{6}{7\cdot10\cdot13}+...+\frac{6}{16\cdot19\cdot22}\)
\(A=\frac{1}{1\cdot4}-\frac{1}{4\cdot7}+\frac{1}{4\cdot7}-\frac{1}{7\cdot10}+...+\frac{1}{16\cdot19}-\frac{1}{19\cdot22}\)
\(A=\frac{1}{4}-\frac{1}{19\cdot22}=\frac{207}{836}\)
\(B=81.\left(\frac{12-\frac{12}{7}-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}:\frac{5+\frac{5}{13}+\frac{5}{169}+\frac{5}{91}}{6+\frac{6}{13}+\frac{6}{169}+\frac{6}{91}}\right).\frac{158158158}{711711711}\)
\(\Leftrightarrow B=81.\left(\frac{12\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}{4\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}:\frac{5\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}{6\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}\right).\frac{158\left(1001001\right)}{711\left(1001001\right)}\)
\(\Leftrightarrow B=81\left(\frac{12}{3}:\frac{5}{6}\right).\frac{158}{711}\)
\(\Leftrightarrow B=81\left(3.\frac{6}{5}\right).\frac{2}{9}\)
\(\Leftrightarrow B=81.\frac{18}{5}.\frac{2}{9}\)
\(\Leftrightarrow B=\frac{324}{5}\)
Hok tốt!!
\(\frac{1}{2}A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\)
\(\frac{1}{2}A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(\frac{1}{2}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(\frac{1}{2}A=1-\frac{1}{10}\)
\(\frac{1}{2}A=\frac{9}{10}\)
\(A=\frac{9}{10}:\frac{1}{2}\)
\(A=\frac{18}{10}=\frac{9}{5}\)
\(P=\frac{12}{1.4.7}+\frac{12}{4.7.10}+\frac{12}{7.10.13}+...+\frac{12}{54.57.60}\)
\(P=4.\left(\frac{3}{1.4.7}+\frac{3}{4.7.10}+\frac{3}{7.10.13}+...+\frac{3}{54.57.60}\right)\)
\(P=4\left(\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+\frac{1}{7.10}+...+\frac{1}{54.57}-\frac{1}{57.60}\right)\)
\(P=4.\left(\frac{1}{4}-\frac{1}{3420}\right)\)
\(P=4.\frac{427}{1710}\)
\(P=\frac{854}{855}\)