Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Theo đề ta có :}\)
\(\frac{\left(-1\right)^6\cdot3^5\cdot4^3}{9^2\cdot2^5}\)
= \(\frac{1\cdot3^5\cdot\left(2^2\right)^3}{\left(3^2\right)^2\cdot2^5}\) = \(\frac{3^5\cdot2^6}{3^4\cdot2^5}=\frac{3^4\cdot3\cdot2^5\cdot2}{3^4\cdot2^5}=3\cdot2=6\)
bài 2
làm câu B;C nha
B)
\(27^3=\left(3^3\right)^3=3^9\)
\(9^5=\left(3^2\right)^5=3^{10}\)
vì \(10>9\)
\(=>9^5>27^3\)
C)
\(\left(\frac{1}{8}\right)^6=\left(\frac{1}{2^3}\right)^6=\frac{1^6}{2^{18}}=\frac{1}{2^{18}}\)
\(\left(\frac{1}{32}\right)^4=\left(\frac{1}{2^5}\right)^4=\frac{1^4}{2^{20}}=\frac{1}{2^{20}}\)
vì \(2^{18}< 2^{20}\)
\(=>\frac{1}{2^{18}}>\frac{1}{2^{20}}\)
\(=>\left(\frac{1}{8}\right)^6>\left(\frac{1}{32}\right)^4\)
\(\text{A.}\frac{32^3.9^5}{8^3.6^6}=\frac{\left(2^5\right)^3.\left(3^2\right)^5}{\left(2^3\right)^3.\left(2.3\right)^6}=\frac{2^{15}.3^{10}}{2^9.2^6.3^6}=\frac{3^{10}}{3^6}=3^4=81\)
\(\text{B.}\frac{\left(5^5-5^4\right)^3}{50^6}=\frac{2500^3}{50^6}=\frac{\left(50^2\right)^3}{50^6}=\frac{50^6}{50^6}=1\)
Bài 2:
\(\text{A.Ta có:}\)
\(5^6=\left(5^3\right)^2=125^2\)
\(\left(-2\right)^{14}=2^{14}=\left(2^7\right)^2=128^2\)
Vì \(125< 128\)
\(\Rightarrow125^2< 128^2\)
\(\Rightarrow5^6< \left(-2\right)^{14}\)
\(\text{B.Ta có:}\)
\(9^5=\left(3^2\right)^5=3^{10}\)
\(27^3=\left(3^3\right)^3=3^9\)
Vì \(9< 10\)
\(\Rightarrow3^9< 3^{10}\)
\(\Rightarrow27^3< 9^5\)
\(\text{C.Ta có:}\)
\(\left(\frac{1}{8}\right)^6=\left[\left(\frac{1}{2}\right)^3\right]^6=\left(\frac{1}{2}\right)^{18}\)
\(\left(\frac{1}{32}\right)^4=\left[\left(\frac{1}{2}\right)^5\right]^4=\left(\frac{1}{2}\right)^{20}\)
Vì \(18< 20\)
\(\Rightarrow\left(\frac{1}{2}\right)^{18}< \left(\frac{1}{2}\right)^{20}\)
\(\Rightarrow\left(\frac{1}{8}\right)^6< \left(\frac{1}{32}\right)^4\)
S = (122 + 142 + 162 + 182 + 202) - (12 + 32 + 52 + 72 + 92)
= (22 . 62 + 22 . 72 + ....+ 22 . 102) - (12 + 32 + 52 + 72 + 92)
= [22 (62 + 72 + ... + 102)] + [(22 + 42 + 62 + 82 + 102) - ( 12 + 22 +...+ 102)]
Tính nốt :)
Câu 1:
a) 2225 và 3150
Ta có:2225=(29)25=51225
3150=(36)25=72925
Vì 51225<72925
Suy ra: 2225<3150
Câu 2:
a)\(25^3:5^2=\left(5^2\right)^3:5^2=5^6:5^2=5^4\)
b)\(\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6=\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6=\left(\frac{3}{7}\right)^{21}:\left(\frac{3}{7}\right)^{12}=\left(\frac{3}{7}\right)^9\)
c)\(3-\left(-\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^2:2=3+\frac{1}{4}:2=3+\frac{1}{8}=\frac{25}{8}\)
Câu 3:
a)\(9.3^3.\frac{1}{81}.3^2=3^2.3^3.3^2.\left(\frac{1}{3^4}\right)=3^7:3^4=3^3\)
b)\(4.2^5:\left(2^3.\frac{1}{16}\right)=2^2.2^5:\left(2^3.\frac{1}{2^4}\right)=2^7:\frac{1}{2}=2^8\)
c)\(3^2.2^5.\left(\frac{2}{3}\right)^2=288.\frac{4}{9}=2^7\)
d)\(\left(\frac{1}{3}\right)^3.\frac{1}{3}.9^2=\left(\frac{1}{3}\right)^4.\left(3^2\right)^2=3^4.\left(\frac{1}{3}\right)^4=3^4:3^4=1\)
1/ \(\left(\frac{3}{7}\right)^n=\frac{81}{2401}\)
\(\Rightarrow\left(\frac{3}{7}\right)^n=\left(\frac{3}{7}\right)^4\)
\(\Rightarrow n=4\)
Bài 1:
1. \(\left(\frac{3}{7}\right)^n=\frac{81}{2401}\)
⇒ \(\left(\frac{3}{7}\right)^n=\left(\frac{3}{7}\right)^4\)
⇒ \(n=4\)
Vậy \(n=4.\)
2. \(x^5=x^3\)
⇒ \(x^5-x^3=0\)
⇒ \(x^3.\left(x^2-1\right)=0\)
⇒ \(\left[{}\begin{matrix}x^3=0\\x^2-1=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=0\\x^2=0+1\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=0\\x^2=1\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Vậy \(x\in\left\{0;1;-1\right\}.\)
3. \(\left(x-\frac{4}{11}\right)^3=343\)
⇒ \(\left(x-\frac{4}{11}\right)^3=7^3\)
⇒ \(x-\frac{4}{11}=7\)
⇒ \(x=7+\frac{4}{11}\)
⇒ \(x=\frac{81}{11}\)
Vậy \(x=\frac{81}{11}.\)
Chúc bạn học tốt!