Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đăt A= đề bài ta có A=1-1/2+1/2-1/3+1/3-1/4+...+1/2017-1/2018
A=1-1/2018=2017/2018
Ta có :
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(=\)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=\)\(1-\frac{1}{2018}\)
\(=\)\(\frac{2017}{2018}\)
Chúc bạn học tốt ~
\( S =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\)
\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1} {2019}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right) \)
\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)
\(\(\Rightarrow S=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\) \(\Rightarrow S=P\)\)
\(B=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{1}{2018}\)
\(B=1+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{1}{2018}+1\right)\)
\(B=\frac{2019}{2019}+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2018}\)
\(B=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)\)
ta có \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)}=\frac{1}{2019}\)
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{5}-1\right)\left(\frac{1}{6}-1\right)...\left(\frac{1}{2018}-1\right)\)
\(-A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)\left(1-\frac{1}{6}\right)...\left(1-\frac{1}{2018}\right)\)
\(-A=\frac{3}{4}\cdot\frac{4}{5}\cdot\frac{5}{6}\cdot...\cdot\frac{2017}{2018}\)
\(-A=\frac{3}{2018}\)
\(A=-\frac{3}{2018}\)
\(\left(\frac{1}{4}-1\right).\left(\frac{1}{5}-1\right)...\left(\frac{1}{2017}-1\right)\left(\frac{1}{2018}-1\right)\)
= \(-\frac{3}{4}.\frac{-4}{5}....\frac{-2016}{2017}.\frac{-2017}{2018}\)
= \(\frac{\left(-3\right).\left(-4\right)....\left(-2016\right).\left(-2017\right)}{4.5...2017.2018}\)
= \(\frac{\left(-3\right).4.5.6...2016.2017}{4.5..2017.2018}\)
= \(\frac{-3}{2018}\)