Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 20.21.22
4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + ... + 20.21.22.4
4A = 1.2.3.4 + 2.3.4.(5 - 1) + 3.4.5.(6 - 2) + ... + 20.21.22.(23 - 19)
4A = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 20.21.22.23 - 19.20.21.22
4A = 20.21.22.23
A = 20.21.22.23 : 4
A = 53130
Đặt A = 1.2.3 + 2.3.4 + 3.4.5 + 4.5.6 +...+ 20.21.22
\(\Rightarrow4A=1.2.3.4+2.3.4.4+3.4.5.4+4.5.6.4+...+20.21.22.4\)
\(=1.2.3.4+2.3.4.\left(5-1\right)+3.4.5.\left(6-2\right)+4.5.6.\left(7-3\right)+...+20.21.22.\left(23-19\right)\)
= 1.2.3.4 + 2.3.4.5 -1.2.3.4 + 3.4.5.6 - 2.3.4.5 + 4.5.6.7 - 3.4.5.6 +...+ 20.21.22.23 - 19.20.21.22
= 20.21.22.23
= 212520
_Hok tốt_
!!!
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{20.21.22}=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{20.21.22}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+....+\frac{1}{20.21}-\frac{1}{21.22}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{462}\right)=\frac{1}{2}.\frac{115}{231}=\frac{115}{462}\)
a) Số hạng trong tổng có dạng n.(n+1)(n+2)
nhận xét: n(n+1)(n+2)(n+3) - (n-1).n(n+1)(n+2) = 4.n(n+1)(n+2). Tính A
4.A = 2.3.4.(5-1) + 3.4.5.(6-2) + ...+ 20.21.22.(23 - 19)
4.A = 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ...+ 20.21.22.23 - 19.20.21.22
4.A = (2.3.4.5 + 3.4.5.6 + ...+ 20.21.22.23) - (1.2.3.4 + 2.3.4.5 + ...+ 19.20.21.22)
4.A = 20.21.22.23 - 1.2.3.4 = 212 496 => A = 53 124
b) Em xem lại : dạng nào đã hỏi rồi , em nên tự làm
Đặt A=1.2.3+2.3.4+.....+5.6.7
4A=1.2.3.4+2.3.4.(5-1)+.........+5.6.7.(8-4)
4A=1.2.3.4+2.3.4.5-1.2.3.4+........+5.6.7.8-4.5.6.7
4A=5.6.7.8
A=5.6.7.8:4
A=420
A=1(2+1)+2(3+1)+3(4+1)+...+99(100 +1 )
A=1.2+1+2.3+2+3.4+3...99.100+99
A=(1.2+2.3+3.4+...99.100)+(1+2+3+4...99)
giải:
Đặt A=1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100
4A=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100)4
4A=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100
4A=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98.99.100.101
4A=98.99.100.101
=>A=98.99.100.101/4
đặt S=1.2.3+2.3.4+....+47.48.49
4S=1.2.3.(4-0)+2.3.4.(5-1)+...+47.48.49.(50-46)
4S=1.2.3.4-1.2.3+2.3.4.5-1.2.3.4+....+47.48.49.50-46.47.48.49
4S=47.48.49.50-1.2.3
S=(47.48.49.50-1.2.3):4
A = 1/2 - 1/3 - 1/4 + 1/3 - 1/4 - 1/5 + 1/4 - 1/5 - 1/6
A = 1/2 - 1/6
A = 1/3
k mk nha. ths bn nhìu nha
A = 1/2.3 - 1/ 3.4 + 1/3.4 - 1/4.5 + 1/4.5 -1/5.6
= 1/2.3 - 1/5.6
= 1/6 - 1/30
= 2/15
Vậy A = 1/15
B=1.2.3+2.3.4+4.5.6+....+20.21.22
=>4B=4(1.2.3+2.3.4+3.4.5+...+20.21.22)
=>4B=1.2.3.4+2.3.4.4+3.4.5.4+...+20.21.22.4
=>4B=1.2.3.4+2.3.4.(5-1)+3.4.5.(6-2)+...+20.21.22(23-19)
=>4B=1.2.3.4+2.3.4.5-2.3.4+3.4.5.6-2.3.4.5+...+20.21.22.23-19.20.21.22
=>4B=20.21.22.23
=>4B=212520
=>B=53130
mình nha
Đặt A = 1 . 2 . 3 + 2 . 3 . 4 + 3 . 4 . 5 + 4 . 5 . 6 + ... + 20 . 21 . 22
=> 4A = 1 . 2 . 3 . 4 + 2 . 3 . 4 . 4 + 3 . 4 . 5 . 4+ 4 . 5 . 6 . 4 + ... + 20 . 21 . 22 . 4
=> 4A = 1 . 2 . 3 . ( 4 - 0 ) + 2 . 3 . 4 . ( 5 - 1 ) + 3 . 4 . 5 . ( 6 - 2 ) + 4 . 5 . 6 . ( 7 - 3 ) + ... + 20 . 21 . 22 . ( 23 - 19 )
=> 4A = 1 . 2 . 3 . 4 - 0 + 2 . 3 . 4 . 5 - 1 . 2 . 3 . 4 + 3 .4 . 5 . 6 - 2 . 3 . 4 . 5 + 4 . 5 . 6 . 7 - 3 . 4 . 5 . 6 + ... + 20 . 21.22.23 - 19.20.21.22
=> 4A = 0 + 20 . 21 . 22 . 23
=> 4A = 212520
=> A = \(\frac{212520}{4}=53130\)