Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{99.100}-\dfrac{1}{98.99}-....-\dfrac{1}{3.2}-\dfrac{1}{2.1}\\ =-\left(-\dfrac{1}{99.100}+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{98.99}\right)\\ =-\left(-\dfrac{1}{99.100}+\dfrac{98}{99}\right)\\ =\dfrac{1}{99.100}-\dfrac{98}{99}\\ =\dfrac{1}{99}\left(\dfrac{1}{100}-98\right)=\dfrac{-9799}{9900}\)
bài này dễ lắm,mình giải đây:
C = \(\frac{1}{100}\)- \(\frac{1}{100.99}\)-\(\frac{1}{99.98}\)\(\frac{1}{98.97}\)- ... - \(\frac{1}{3.2}\)- \(\frac{1}{2.1}\)
C = \(\frac{-1}{1.2}\)+ \(\frac{-1}{2.3}\) + ... +\(\frac{-1}{98.99}\)+ \(\frac{1}{99.100}\)+ \(\frac{1}{100}\)
C = \(\frac{-1}{1}\)- \(\frac{-1}{2}\)
Mình bận rồi , phần sau tự làm nha.
\(=\dfrac{1}{99\cdot97}-\left(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{95\cdot97}\right)\)
\(=\dfrac{1}{99\cdot97}-\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{95\cdot97}\right)\)
\(=\dfrac{1}{99\cdot97}-\dfrac{1}{2}\cdot\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{95}-\dfrac{1}{97}\right)\)
\(=\dfrac{1}{99\cdot97}-\dfrac{48}{97}=\dfrac{1-48\cdot99}{97\cdot99}=\dfrac{-4751}{9603}\)
Sửa đề: \(\dfrac{1}{99.97}-\dfrac{1}{97.95}-\dfrac{1}{95.93}-...-\dfrac{1}{3.1}\)
\(=\dfrac{1}{97.99}-\left(\dfrac{1}{1.3}+...+\dfrac{1}{93.95}+\dfrac{1}{95.97}\right)\)
\(=\dfrac{1}{97.99}-\dfrac{1}{2}\left(\dfrac{2}{1.3}+...+\dfrac{2}{93.95}+\dfrac{2}{95.97}\right)\)
\(=\dfrac{1}{97.99}-\dfrac{1}{2}\left(1-\dfrac{1}{3}+...+\dfrac{1}{93}-\dfrac{1}{95}+\dfrac{1}{95}-\dfrac{1}{97}\right)\)
\(=\dfrac{1}{97.99}-\dfrac{1}{2}\left(1-\dfrac{1}{97}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{2}{97.99}\right)-\dfrac{1}{2}.\dfrac{96}{97}\)
\(=\dfrac{1}{2}\left(\dfrac{1}{97}-\dfrac{1}{99}\right)-\dfrac{48}{97}\)
.........................
\(\frac{1}{100.99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{2.1}\right)\)
\(=\frac{1}{100}-\frac{1}{99}-\left(\frac{1}{99}-\frac{1}{98}+\frac{1}{98}-\frac{1}{97}+...+\frac{1}{2}-1\right)\)
\(=\frac{1}{100}-\frac{1}{99}-\left(\frac{1}{99}-1\right)\)
\(=\frac{1}{100}-\frac{1}{99}-\frac{1}{99}+1\)
\(=\frac{9799}{9900}\)
\(C=\dfrac{1}{100}-\dfrac{1}{100\cdot99}-\dfrac{1}{99\cdot98}-\dfrac{1}{98\cdot97}-...-\dfrac{1}{3\cdot2}-\dfrac{1}{2\cdot1}\)
\(C=\dfrac{1}{100}-\left(\dfrac{1}{2\cdot1}+\dfrac{1}{3\cdot2}+...+\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\right)\)
\(C=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(C=\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\)
\(C=\dfrac{1}{100}-\dfrac{99}{100}=\dfrac{-98}{100}=-\dfrac{49}{50}\)
\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\frac{99}{100}\)
\(C=-\frac{98}{100}=-\frac{49}{50}\)