Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=(1+1+1+...+1)+(1/1*3+1/2*4+1/3*5+...+1/2015*2017+1/2015*2017)
C=2015+(2/1*3+2/2*4+2/3*5+...+2/2015*2017+2/2015*2017):2
C=2015+(1-1/3+1/2-1/4+...+1/2015-1/2017+1/2015-1/2017):2
C=2015+(1+1/2-1/2016-1/2017+1/2015-1/2017)
cai nay thi ban tu tinh lay
nho k cho minh voi nhe
a) Đặt A= \(\frac{1+2+2^2+2^3+...+2^{2009}}{1-2^{2010}}\)
Đặt S = 1 + 2 + 22 + 23 + ... + 22009
=> 2S = 2 + 22 + 23 + ... + 22010
=> 2S - S = (2 + 22 + 23 + ... + 22010) - (1 + 2 + 22 + 23 + .. + 22009)
=> S = 22010 - 1
=> S = - 1 - 22010
\(\Rightarrow A=\frac{-1-2^{2010}}{1-2^{2010}}=-1\)
Vậy \(\frac{1+2+2^2+2^3+...+2^{2009}}{1-2^{2010}}=-1\)
b) Đặt: \(A=\frac{1}{299.297}-\frac{1}{297.295}-\frac{1}{295.293}-...-\frac{1}{3.1}\)
\(\Rightarrow-2A=-\frac{2}{299.297}+\frac{2}{297.295}+\frac{2}{295.293}+...+\frac{2}{3.1}\)
\(\Rightarrow-2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{295.297}-\frac{2}{297.299}\)
\(\Rightarrow-2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{295}-\frac{1}{297}-\frac{1}{297.299}\)
\(\Rightarrow-2A=1-\frac{1}{297}-\frac{2}{88803}\)
\(\Rightarrow-2A=\frac{296}{297}-\frac{2}{88803}=\frac{88504}{88803}-\frac{2}{88803}=\frac{88502}{88803}\)
\(\Rightarrow A=\frac{88502}{88803}:\left(-2\right)=\frac{44251}{88803}\)
Vậy \(\frac{1}{299.297}-\frac{1}{297.295}-\frac{1}{295.293}-...-\frac{1}{3.1}=\frac{44251}{88803}\)
c) Đặt \(B=\frac{12}{1.3.5}+\frac{12}{3.5.7}+\frac{12}{5.7.9}+...+\frac{12}{25.27.29}\)
\(\Rightarrow\frac{B}{3}=\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{12}{25.27.29}\)
\(\Rightarrow\frac{B}{3}=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{25.27}-\frac{1}{27.29}\)
\(\Rightarrow\frac{B}{3}=\frac{1}{1.3}-\frac{1}{27.29}\)
\(\Rightarrow\frac{B}{3}=\frac{1}{3}-\frac{1}{783}=\frac{261}{783}-\frac{1}{783}=\frac{260}{783}\)
\(\Rightarrow B=\frac{260}{783}.3=\frac{260}{261}\)
Vậy \(\frac{12}{1.3.5}+\frac{12}{3.5.7}+\frac{12}{5.7.9}+...+\frac{12}{25.27.29}=\frac{260}{261}\)
Duyệt mk nha!!!
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+.....+\frac{1}{2016\cdot2017}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{2016}-\frac{1}{2017}\)
\(=1-\frac{1}{2017}=\frac{2016}{2017}\)
= 1/1-1/2+1/2-1/3+1/3-............-1/2017
=1-1/2017
=2016/2017
\(B1\)
\(=\frac{1}{1}-\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{37}-\frac{1}{38}-\frac{1}{39}\)
\(=1-\frac{1}{39}\)
\(=\frac{38}{39}\)
\(B2\)
\(=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+.....+\frac{1}{99\cdot100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+......+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}\)
\(=\frac{25}{100}-\frac{1}{100}\)
\(=\frac{24}{100}\)
\(=\frac{6}{25}\)
Bài 1 :
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\)
\(=\frac{1}{1.2}-\frac{1}{38.39}\)
\(=\frac{370}{741}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{99}\right)\)
\(A=\frac{1}{2}.\frac{98}{99}\)
\(A=\frac{49}{99}\)
=\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)
=1-\(\frac{1}{99}\)
=\(\frac{98}{99}\)
Bài giải
a, \(\frac{7}{12}+\frac{5}{6}+\frac{1}{4}-\frac{3}{7}-\frac{5}{12}\)
\(=\left(\frac{7}{12}-\frac{5}{12}+\frac{5}{6}+\frac{1}{4}\right)-\frac{3}{7}=\left(\frac{7}{12}-\frac{5}{12}+\frac{10}{12}+\frac{3}{12}\right)-\frac{3}{7}=\frac{5}{4}-\frac{3}{7}=\frac{23}{28}\)
b, \(\frac{11\cdot3^{22}\cdot3^7-9^{15}}{\left(2\cdot3^{14}\right)^2}=\frac{11\cdot3^{29}-3^{30}}{2^2\cdot3^{28}}=\frac{3^{29}\left(11-3\right)}{3^{28}\cdot4}=\frac{3\cdot8}{4}=6\)
A = 6.(1/1.3+1/3.5+...+1/2015.2017)
= 6.(1/1-1/3+1/3-1/5+...+1/2015-1/2017)
= 6.(1/1-1/2017)
= 6.2016/2017
=12096/2017