K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2018

\(1\frac{13}{15}\cdot\left(0,5\right)^2\cdot3-\left(\frac{8}{15}+1\frac{19}{60}\right):1\frac{19}{60}\)

\(=\frac{28}{15}\cdot\frac{1}{4}\cdot\frac{3}{1}-\frac{37}{20}\cdot\frac{60}{79}\)

\(=\frac{7}{5}-\frac{111}{79}\)

\(=\frac{-2}{395}\)

1 tháng 4 2019

=28/15.1/4.3-8/15-79/60.60/79

=7.4/15.1/4.3-8/15-1

=7/15.3-8/15-1

=21/15-8/15-1

=13/15-1

=-2/15

4 tháng 10 2021

yutyugubhujyikiu

18 tháng 12 2016

a) \(\frac{11}{24}-\frac{5}{41}+\frac{13}{24}+0,5-\frac{36}{41}\)

= \(\frac{11}{24}-\frac{5}{41}+\frac{13}{24}+\frac{1}{2}-\frac{36}{41}\)

= \(\frac{1}{2}-\left\{\frac{11}{24}+\frac{13}{24}\right\}-\left\{\frac{5}{41}+\frac{36}{41}\right\}\)

=\(\frac{1}{2}-\frac{24}{24}-\frac{41}{41}\)

=\(\frac{1}{2}-1-1\)

=\(\frac{-3}{2}\)

b) \(-12:\left\{\frac{3}{4}-\frac{5}{6}\right\}^2\)

= \(-12:\left\{\frac{9}{12}-\frac{10}{12}\right\}^2\)

= \(-12:\left\{\frac{-1}{12}\right\}^2\)

= \(-12:\frac{1}{144}\)

= \(-12.144\)

= -1728

c) \(\frac{7}{23}.\left[\left(\frac{-8}{6}\right)-\frac{45}{18}\right]\)

= \(\frac{7}{23}.\left[\left(\frac{-24}{18}\right)-\frac{45}{18}\right]\)

= \(\frac{7}{23}.\left(\frac{-23}{6}\right)\)

= \(\frac{-7}{6}\)

d) \(23\frac{1}{4}.\frac{7}{5}-13\frac{1}{4}:\frac{5}{7}\)

= \(23\frac{1}{4}.\frac{7}{5}-13\frac{1}{4}.\frac{7}{5}\)

= \(\left\{23\frac{1}{4}-13\frac{1}{4}\right\}.\frac{7}{5}\)

= \(10.\frac{7}{5}\)

= 14

 

e) (1+2314).(0,834)2

= (1+2314).(\(\frac{4}{5}\)34)2

= \(\left(\frac{12}{12}+\frac{8}{12}-\frac{3}{12}\right).\left(\frac{16}{20}-\frac{15}{20}\right)^2\)

= \(\frac{17}{12}.\left(\frac{1}{20}\right)^2\)

= \(\frac{17}{20}.\frac{1}{400}\)

= \(\frac{17}{8000}\)

 

16 tháng 7 2016

a)\(1\frac{4}{23}+\frac{5}{21}-\frac{4}{23}+0,5+\frac{16}{21}\)

\(=\left(1\frac{4}{23}-\frac{4}{23}\right)+\left(\frac{5}{21}+\frac{16}{21}\right)+0,5\)

\(=1+1+0,5\)

\(=2,5\)

b)\(\frac{3}{7}.19\frac{1}{3}-\frac{3}{7}.33\frac{1}{3}\)

\(=\frac{3}{7}.\left(19\frac{1}{3}-33\frac{1}{3}\right)\)

\(=\frac{3}{7}.\left(-14\right)\)

\(=-6\)

c)\(9.\left(-\frac{1}{3}\right)^3+\frac{1}{3}\)

\(=9.\left(-\frac{1}{3}\right)^3+9.\frac{1}{27}\)

\(=9.\left[\left(-\frac{1}{3}\right)^3+\frac{1}{27}\right]\)

\(=9.0=0\)

d)\(15\frac{1}{4}:\left(-\frac{5}{7}\right)-25\frac{1}{4}:\left(-\frac{5}{7}\right)\)

\(=\left(15\frac{1}{4}-25\frac{1}{4}\right):\left(-\frac{5}{7}\right)\)

\(=\left(-10\right):\left(-\frac{5}{7}\right)\)

\(=14\)

 

11 tháng 12 2019

a) \(\frac{15}{12}+\frac{5}{13}-\frac{3}{12}-\frac{18}{13}=\left(\frac{15}{12}-\frac{3}{12}\right)+\left(\frac{5}{13}-\frac{18}{13}\right)\)

                                                     \(=1+\left(-1\right)\)

                                                     \(=0\)

b) \(\frac{11}{24}-\frac{5}{41}+\frac{13}{24}+0,5-\frac{36}{41}=\left(\frac{11}{24}+\frac{13}{24}\right)+\left(-\frac{5}{41}-\frac{36}{41}\right)+0,5\)

                                                                    \(=1+\left(-1\right)+0,5\)

                                                                    \(=0,5\)

_Học tốt nha_

11 tháng 12 2019

a, \(\frac{15}{12}\)\(\frac{5}{13}\)\(\frac{3}{12}\)-\(\frac{18}{13}\)

\(\frac{5}{4}\)\(\frac{5}{13}\) - \(\frac{1}{4}\) - \(\frac{18}{13}\)

\(\left(\frac{5}{4}-\frac{1}{4}\right)\)\(\left(\frac{5}{13}-\frac{18}{13}\right)\)

= 1 - 1 = 0

b, \(\frac{11}{24}\)\(\frac{5}{41}\)\(\frac{13}{24}\)+ 0,5 - \(\frac{36}{41}\)

\(\left(\frac{11}{24}+\frac{13}{24}\right)\)\(\left(\frac{5}{41}+\frac{36}{41}\right)\)+ 0,5

= 1 - 1 + 0,5 = 0,5

c,  \(\left(-\frac{3}{4}+\frac{2}{3}\right):\frac{5}{11}+\left(-\frac{1}{4}+\frac{1}{3}\right):\frac{5}{11}\)

=\(\left(-\frac{3}{4}+\frac{2}{3}\right).\frac{11}{5}+\left(-\frac{1}{4}+\frac{1}{3}\right).\frac{5}{11}\)

\(\frac{11}{5}.\left(-\frac{3}{4}+\frac{2}{3}-\frac{1}{4}+\frac{1}{3}\right)\)

\(\frac{11}{5}.\left[\left(-\frac{3}{4}-\frac{1}{4}\right)+\left(\frac{2}{3}+\frac{1}{3}\right)\right]\)

=  \(\frac{11}{5}.\left[\left(-1\right)+1\right]\)

= 0

d, \(\left(-3\right)^2.\left(\frac{3}{4}-0,25\right)-\left(3\frac{1}{2}-1\frac{1}{2}\right)\)

\(9.\left(0,75-0,25\right)-2\)

= 9. 0,5 - 2 = 2,5

e, \(\frac{13}{25}+\frac{6}{41}-\frac{38}{25}+\frac{35}{41}-\frac{1}{2}\)

\(\left(\frac{13}{25}-\frac{38}{25}\right)+\left(\frac{6}{41}+\frac{35}{41}\right)-\frac{1}{2}\)

= -1 + 1 - \(\frac{1}{2}\)

\(-\frac{1}{2}\)

14 tháng 9 2016

b) \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=\frac{-2}{3}\)

d) \(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}+\frac{2}{11}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}+\frac{13}{11}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{11}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{11}\right)}=\frac{2}{13}\)

15 tháng 9 2016

Làm tiếp:

\(=\left(1+\frac{1}{2}+.....+\frac{1}{2017}\right)-\left(1+\frac{1}{2}+....+\frac{1}{1008}\right)\)

\(=\frac{1}{1009}+\frac{1}{1010}+.........+\frac{1}{2017}\)

\(\Rightarrow\frac{\frac{1}{1009}+....+\frac{1}{2017}}{1-\frac{1}{2}+.....+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}}=1\)

Bài 2:

Đặt \(A=\frac{1}{2^2}+.......+\frac{1}{2^{800}}\)

\(4A=1+\frac{1}{2^2}+.....+\frac{1}{2^{798}}\)

\(\Rightarrow4A-A=1-\frac{1}{2^{800}}\)

\(\Rightarrow3A=1-\frac{1}{2^{800}}< 1\Rightarrow A< \frac{1}{3}\)

Vậy \(\frac{1}{2^2}+\frac{1}{2^4}+........+\frac{1}{2^{800}}< \frac{1}{3}\)

15 tháng 9 2016

Bài 1:Tính

a,   Xét biểu thức \(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).........\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)..........\left(1+\frac{n+2}{n}\right)}\) với\(n\in N\)

Ta có:\(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).......\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)......\left(1+\frac{n+2}{n}\right)}\)

\(=\frac{\frac{n+1}{1}.\frac{n+2}{2}........\frac{2n+2}{n+2}}{\frac{n+3}{1}.\frac{n+4}{2}.........\frac{2n+2}{n}}\)

\(=\frac{\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right)}{1.2.3.........\left(n+2\right)}}{\frac{\left(n+3\right)\left(n+4\right)........\left(2n+2\right)}{1.2.3.........n}}\)

\(=\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right).1.2.3.......n}{\left(n+3\right)\left(n+4\right)........\left(2n+2\right).1.2.3......\left(n+2\right)}\)

\(=\frac{\left(n+1\right)\left(n+2\right)}{\left(n+1\right)\left(n+2\right)}=1\)

Áp dụng vào bài toán ta có đáp số là:1

b, \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=-\frac{2}{3}\)

c,\(\frac{\frac{1}{6}-\frac{1}{39}+\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}=\frac{\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}{\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}=\frac{\frac{1}{3}}{\frac{1}{4}}=12\)

d,\(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}=\frac{2}{13}\)

e,Xét mẫu số ta có:

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..........+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\)

\(=1+\frac{1}{2}-2.\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-2.\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-2.\frac{1}{2016}+\frac{1}{2017}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{2017}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+.........+\frac{1}{2016}\right)\)