Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=100^2+200^2+300^2+...+1000^2\)
\(=100^2\cdot\left(1+2^2+3^2+...+10^2\right)\)
\(=100^2\cdot385=3850000\)
P = 32 + 62 + 92 + ... + 302
P = 32 . (12 + 22 + 32 + ... + 102)
P = 9 . 385
P = 3465
a) C = 106 + 57
C = 26 . 56 + 57
C = 56 . (26 + 5)
C = 56 . (64 + 5)
C = 56 . 69 chia hết cho 69
b) 310 . 199 - 39 . 500
= 39 . (3.199 - 500)
= 39 . (597 - 500)
= 39 . 97 chia hết cho 97
Nhóm 1: 5x^2y^3;x^2y^3;1/2x^2y^3;x^2y^3
Tổng là 6,5x^2y^3
Nhóm 2: 10x^3y^2;-3x^3y^2;-5x^3y^2
Tổng là 2x^3y^2
Mình làm bài tổng quát nha để bạn hiểu sau rồi bạn thay vào .
Đặt \(S_1=1+2+...+n\)
\(\Rightarrow S_1=\frac{n\left(n+1\right)}{2}\)
Đặt \(S_2=1^2+2^2+...+n^2\)
Ta có:
\(2^3=\left(1+1\right)^3=1^3+3.1^2+3.1+1\)
\(3^3=\left(2+1\right)^3=2^3+3.2^2+3.2+1\)
..................................................................................
\(\left(n+1\right)^3=n^3+3n^2+3n+1\)
Cộng từng vế n thẳng đẳng thức trên ta được :
\(\left(n+1\right)^3=1^3+3.\left(1^2+2^2+...+n^2\right)+3.\left(1+2+3+...+n\right)+n\)
\(\Rightarrow\left(n+1\right)^3=1^3+3.\left(1^2+2^2+...+n^2\right)+\frac{3n\left(n+1\right)}{2}+n\)
\(\Rightarrow3.\left(1^2+2^2+...+n^2\right)=\left(n+1\right)^3-\frac{3n\left(n+1\right)}{2}-\left(n+1\right)\)
Hay \(3S_2=\left(n+1\right)\left[\left(n+1\right)^2-\frac{3n}{2}-1\right]\)
\(\Rightarrow3S_2=\left(n+1\right)\left(n^2+\frac{n}{2}\right)\)
\(\Rightarrow3S_2=\frac{1}{2}n\left(n+1\right)\left(2n+1\right)\)
\(\Rightarrow S_2=\frac{1}{6}n\left(n+1\right)\left(2n+1\right)\)
Đặt \(S_3=1^3+2^3+...+n^3\)
Ta có:
\(\left(1+1\right)^4=1^4+4.1^3+6.1^2+4.1+1\)
\(\left(2+1\right)^4=2^4+4.2^3+6.2^2+4.2+1\)
........................................................................................
\(\left(n+1\right)^4=n^4+4n^3+6n^2+4n+1\)
Cộng từng vế n đẳng thức trên ta được :
\(\left(n+1\right)^4=1^4+4.\left(1^3+2^3+...+n^3\right)+6.\left(1^2+2^2+...+n^2\right)+4.\left(1+2+...+n\right)+n\)
\(\Rightarrow\left(n+1\right)^4=1+4S_3+6S_2+4S_1+n\)
Đã chứng minh \(S_1=\frac{n\left(n+1\right)}{2}\)
\(S_2=\frac{1}{6}n\left(n+1\right)\left(2n+1\right)\)
Từ đó tính được :
\(S_3=\frac{n^2\left(n+1\right)^2}{4}\)
đó là công thức giờ chỉ vệc thay vào
\(1^3+2^3+3^3+4^3+5^3=\frac{5^2\left(5+1\right)^2}{4}=225\)
\(A=\frac{2}{3}+\frac{2}{3^2}+\frac{2}{3^3}+...+\frac{2}{3^{10}}=2\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{10}}\right)\)
\(=>3A=2\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^9}\right)\)
\(=>3A-A=2\left[\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^9}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{10}}\right)\right]\)
\(=>2A=2\left(1-\frac{1}{3^{10}}\right)=>A=1-\frac{1}{3^{10}}\)