Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hahaha. Hỏi một phát 5 câu lun hả bà!!!!!
Bài 5 nhé:
Ta có: (làm hơi tắt nhưng cái này cậu tự biến đổi đc)
\(y=72x-\sqrt{\frac{5x^5-16277165}{20}}\) => \(5x^5-\frac{16277165}{20}\ge0\)( vì có căn nên cái bên trong lun lớn hon hoặc = 0)
=> \(x\ge\sqrt[5]{\frac{16277165}{5}}=20,0688....\)mà x nguyên dương => \(x\ge21\)
Nhập vào máy tính: X = X+1 : 72X - \(\sqrt{\frac{5x^5-16277165}{20}}\)
Sau đó ấn CALC 20 = = = .... ( ấn liên tiếp phím = tìm các giá trị \(72x-\sqrt{\frac{5x^5-16277165}{20}}\)nguyên dương, đến khi \(72x-\sqrt{\frac{5x^5-16277165}{20}}\)âm thì dừng)
=> Các cặp số (x;y) thỏa mãn đề bài là (29;11)
\(A=\sqrt{4+\sqrt{4+\sqrt{4}+...}}\\ \)>0
a)
\(A=\sqrt{4+A}\Leftrightarrow A^2=4+A\Leftrightarrow A^2-A-4=0\)
\(\Delta=1+16=17\)
\(A_1=\dfrac{1+\sqrt{17}}{2}< \dfrac{1+5}{2}=3\)
\(A_2=\dfrac{1-\sqrt{17}}{2}\)<0 loại
Vậy A < 3
b) Chứng minh quy nạp
(13+23+.....+n3)=(1+2+3+...+n)2=> KL
b).đặt \(A=\sqrt{1^3+2^3+3^3+...+n^3}\)
ta có hằng đẳng thức: \(x^3-x=\left(x-1\right)x\left(x+1\right)\)
\(1^3+2^3+3^3+...+n^3=1^3-1+2^3-2+3^3-3+...+n^3-n+\left(1+2+3+...+n\right)\)\(=0+1.2.3+2.3.4+...+\left(n-1\right)n\left(n+1\right)+\dfrac{n\left(n+1\right)}{2}\)(*)
Xét \(B=1.2.3+2.3.4+...+\left(n-1\right)n\left(n+1\right)\)
\(4B=1.2.3.4+2.3.4.4+...+\left(n-1\right)n\left(n+1\right).4=1.2.3.4+2.3.4.5-1.2.3.4+...+\left(n-1\right)n\left(n+1\right)\left(n+2\right)-\left(n-2\right)\left(n-1\right)n\left(n+1\right)\)
\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow B=\dfrac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)
từ (*): \(1^3+2^3+...+n^3=\dfrac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}+\dfrac{n\left(n+1\right)}{2}\)
\(=\dfrac{n\left(n+1\right)}{2}\left[\dfrac{\left(n-1\right)\left(n+2\right)}{2}+1\right]=\dfrac{n\left(n+1\right)}{2}.\dfrac{n^2+n-2+2}{2}=\left[\dfrac{n\left(n+1\right)}{2}\right]^2\)
do đó \(A=\sqrt{\left[\dfrac{n\left(n+1\right)}{2}\right]^2}=\dfrac{n\left(n+1\right)}{2}=1+2+...+n\)(đpcm)
A.\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\) \(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)\left(n+1-n\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)
=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b. ap dungtinh B =\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)
bạn ơi hình như âu tính giá trị biểu thức N bị sai chỗ phân tích \(\sqrt{21-12\sqrt{3}}\)thì phải ,hình như phải bằng \(\left(2\sqrt{3}-3\right)^2\)