Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
=\(1-\frac{1}{100}=\frac{99}{100}\)
\(B=-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{98.99}-\frac{1}{99.100}\\
=-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\\
=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\\
=-\left(1-\frac{1}{100}\right)=\frac{-99}{100}\)
\(\Leftrightarrow x-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\right)=\frac{1}{100}+\frac{1}{99}-\frac{1}{100}\)
\(\Leftrightarrow x-\frac{98}{99}=\frac{1}{99}\Leftrightarrow x=1\)
\(=1-\frac{1}{2}+\frac{1}{2}+\frac{1}{3}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{99}+\frac{1}{99}\right)-\frac{1}{100}\)
\(=1+0+0+...+0-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}< 11\)
Vậy : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}< 11\)
=1/2-1/3+1/3-1/4+...+1/99-1/100
=1/2-1/100
=50/100-1/100
=49/100<1
=> dãy trên < 1 đđcm
\(A=\frac{1\cdot1}{1\cdot2}\cdot\frac{2\cdot2}{2\cdot3}\cdot\frac{3\cdot3}{3\cdot4}\cdot\frac{4\cdot4}{4\cdot5}=\frac{1\cdot2\cdot3\cdot4}{1\cdot2\cdot3\cdot4}\cdot\frac{1\cdot2\cdot3\cdot4}{2\cdot3\cdot4\cdot5}=\frac{1}{5}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=\frac{1}{1}-\frac{1}{100}\)
\(B=\frac{99}{100}\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\)
= \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}\)\(+...+\frac{1}{2005}-\frac{1}{2006}\)
= \(\frac{1}{2}-\frac{1}{2006}\)
= \(\frac{501}{1003}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2005.2006}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(=\frac{1}{2}-\frac{1}{2006}\) >> Đúng 100% nha!! ^ ^
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{99-98}{98.99}+\frac{100-99}{99.100}\)
\(=\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+\frac{4}{3.4}-\frac{3}{3.4}+\frac{5}{4.5}-\frac{4}{4.5}+...+\frac{99}{98.99}-\frac{98}{98.99}+\frac{100}{99.100}-\frac{99}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
Mình đang bí đây nè
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ............. + 1/99 - 1/100
= 1 - 1/100
= 99/100