Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=1/2+1/2^2+.........+1/2^10
2a=1+1/2+1/2^2+........+1/2^9
2a-a=1-2^10
=1023/1024
2A=2*(1/2+1/2^2+....+1/2^10)
2A=1+1/2+1/2^2+....+1/2^9
2A - A =A=1 - 1/2^10
A= 1/2+1/2^2+1/2^3+....+1/2^10(1)
=> 2A = 1+1/2+1/2^2+...+1/2^9(2)
Lấy (2) - (1) ta có ;
=> A = 1-1/2^10
Vậy.................
A = 1/2 + 1/2^2 + 1/2^3 + ...+ 1/2^10
2A = 1 + 1/2 + 1/2^2 + ...+ 1/2^9
2A - A = 1 - 1/2^10
A = 1 - 1/2^10
Chúc học giỏi !!!
2A=1+1/2+1/22+.....+1/29
2A-A=(1+1/2+1/22+....+1/29)-(1/2+1/22+1/23+...+1/210 )
A=1-1/210
=1024/1024-1/1024
=1023/1024
Vậy A = 1023/1024
Ta có : 2A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
2A A = \(\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
A = \(1-\frac{1}{2^{10}}=\frac{1023}{1024}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{10}}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{1024}=\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{512}-\frac{1}{1024}\)
\(A=\frac{1}{2}-\frac{1}{1024}=\frac{511}{1024}\)
a/A=1+2+4+8+...+1024
2A=2+4+8+16+....+2048
2A-A=(2+4+8+16+....+2048)-(1+2+4+8+...+1024)
A=2048-1
A=2047
VẬY A=2047
b/B=1+5+25+125+....+15625
5B=5+25+125+625+....+78125
5B-B=(5+25+125+625+....+78125)-(1+5+25+125+....+15625)
4B=78125-1
4B=78124
B=78124:4
B=19531
VẬY B =19531
C=1/1.2+1/2.3+1/3.4+...+1/2015.2016
C=1-1/2+1/2-1/3+1/3-1/4+...+1/2015-1/2016
=1-1/2016
=2015/2016
VẬY C=2015/2016
D/=10/1.3+10/3.5+10/5.7+....+10/2013.2015
=5(2/1.3+2/3.5+2/5.7+...+2/2013.2015)
=5(1-1/3+1/3-1/5+1/5-1/7+..+1/2013-1/2015)
=5(1-1/2015)
=5.2014/2015
=2014/403
VẬY D=2014/403
a, A = 1 + 2 + 4 + 8 +...+ 1024
\(A=1+2+2^2+2^3+....+2^{10}\)
\(2A=2+2^2+2^3+....+2^{10}+2^{11}\)
\(A=1+2+2^2+2^3+....+2^{10}\)
\(A=2^{11}-1=2047\)
b, B = 1 + 5 + 25 + 125 + ... + 15625
\(B=1+5+5^2+5^3+....+5^6\)
\(3B=5+5^2+5^3+....+5^6+5^7\)
\(B=1+5+5^2+5^3+....+5^6\)
\(2B=5^7-1\Rightarrow B=\frac{5^7-1}{2}=39062\)
d, D = 10 / 1 . 3 + 10 / 3 . 5 + 10 / 5 . 7 + ... + 10 / 2013 . 2015
\(D=\frac{10}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)
\(D=\frac{10}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(D=\frac{10}{2}.\left(1-\frac{1}{2015}\right)=5.\frac{2014}{2015}=\frac{2014}{403}\)
Câu c thì tương tự
Ta có:
\(2A=2.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{11}}\)
\(\Rightarrow2A-A=A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
\(=1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{10}}=\frac{1023}{1024}\)
(oyo)